Details of Research Outputs

TitleReal-time measurement of nano-agglomerate and aggregate mass and surface area concentrations with a prototype instrument
Author (Name in English or Pinyin)
Su, Lipeng1,2; Ou, Qisheng2; Cao, Leo N. Y.3; Du, Qian1; Pui, David Y. H.2,4
Date Issued2019-12-02
Indexed BySCIE
Firstlevel Discipline化学工程
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 53 期: 12 页: 1453-1467
[1] Amanatidis, S., M. M., Maricq, L., Ntziachristos, and Z., Samaras. 2016. Measuring number, mass, and size of exhaust particles with diffusion chargers: the dual pegasor particle sensor. J. Aerosol Sci. 92:1–15. doi:10.1016/j.jaerosci.2015.10.005.
[2] Brouwer, D., B. V., Duuren-Stuurman, M., Berges, E., Jankowska, D., Bard, and D., Mark. 2009. From workplace air measurement results toward estimates of expourse? Development of a strategy to assess exposure to manufactured nano-objects. J. Nanoparticle Res. 11 (8):1867–1881. doi:10.1007/s11051-009-9772-1.
[3] Bukowiecki, N., D. B., Kittelson, W. F., Watts, H., Burtscher, E., Weingartner, and U., Baltensperger. 2002. Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols. J. Aerosol Sci. 33 (8):1139–1154. doi:10.1016/S0021-8502(02)00063-0.
[4] Buonanno, G., L., Morawska, L., Stabile, and A., Viola. 2010. Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environ. 44 (32):3963–3969. doi:10.1016/j.atmosenv.2010.07.002.
[5] Cao, L. N. Y., and D. Y. H., Pui. 2018. A novel weighted sum method to measure particle geometric surface area in real-time. J. Aerosol Sci. 117:11–23. doi:10.1016/j.jaerosci.2017.12.007.
[6] Cao, L. N. Y., and D. Y. H., Pui. 2019. Real-time measurements of particle geometric surface area by the weighted sum method on a university campus. J. Aerosol Sci. doi:10.1016/j.jaerosci.2017.12.007.
[7] Cao, L. N. Y., J., Wang, H., Fissan, S. E., Pratsinis, M. L., Eggersdorfer, and D. Y. H., Pui. 2015. The capacitance and charge of agglomerated nanoparticles during sintering. J. Aerosol Sci. 83:1–11. doi:10.1016/j.jaerosci.2015.01.002.
[8] Cao, L. N. Y., S. C., Chen, H., Fissan, C., Asbach, and D. Y. H., Pui. 2017. Development of a geometric surface area monitor (GSAM) for aerosol nanoparticles. J. Aerosol Sci. 114:118–129. doi:10.1016/j.jaerosci.2017.09.013.
[9] Chang, J. S., 1981. Theory of diffusion charging of arbitrarily shaped conductive aerosol particles by unipolar ions. J. Aerosol Sci. 12 (1):19–26. doi:10.1016/0021-8502(81)90006-9.
[10] Cho, K., C. J., Hogan, and P., Biswas. 2007. Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis. J. Nanoparticle Res. 9 (6):1003–1012. doi:10.1007/s11051-007-9243-5.
[11] Cho, K., and P., Biswas. 2006. A geometrical sintering model (GSM) to predict surface area change. J. Aerosol Sci. 37 (10):1378–1387. doi:10.1016/j.jaerosci.2005.11.007.
[12] Coble, R. L., 1961. Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32 (5):787–792. doi:10.1063/1.1736107.
[13] Coleman, S. C., and W. B., Beere. 1975. The sintering of open and closed porosity in UO2. Philosoph. Mag. 31 (6):1403–1413. doi:10.1080/00318087508228691.
[14] DeCarlo, P. F., J. G., Slowik, D. R., Worsnop, P., Davidovits, and J. L., Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci. Technol. 38 (12):1185–1205. doi:10.1080/027868290903907.
[15] Eggersdorfer, M. L., D., Kadau, H. J., Herrmann, and S. E., Pratsinis. 2012. Aggregate morphology evolution by sintering: number and diameter of primary particles. J. Aerosol Sci. 46:7–19. doi:10.1016/j.jaerosci.2011.11.005.
[16] Eggersdorfer, M. L., D., Kadau, H. J., Herrmann, and S. E., Pratsinis. 2011. Multiparticle sintering dynamics: from Fractal-Like aggregates to compact structures. Langmuir 27 (10):6358–6367. doi:10.1021/la200546g.
[17] Elihn, K., and P., Berg. 2009. Ultrafine particle characteristics in seven industrial plants. Ann. Occupational Hyginen 53 (5):475–484. doi:10.1093/annhyg/mep033.
[18] Evans, D. E., B. K., Ku, M. E., Birch, and K. H., Dunn. 2010. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann. Occupational Hygiene 54 (5):514–531. doi:10.1093/annhyg/meq015.
[19] Fissan, H., S., Neumann, A., Trampe, D. Y. H., Pui, and W. G., Shin. 2006. Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J. Nanoparticle Res. 9 (1):53–59. doi:10.1007/s11051-006-9156-8.
[20] Holve, D. J., 2011. Two-Angle ratio scattering (STAR) method for real-time measurement of agglomerate soot concentration and size: Theory. Aerosol Sci. Technol. 45 (11):1388–1399. doi:10.1080/02786826.2011.596172.
[21] Kim, S. C., J., Wang, M. S., Emery, W. G., Shin, G. W., Mulholland, and D. Y. H., Pui. 2009. Structural property effect of nanoparticle agglomerates on particle penetration through fibrous filter. Aerosol Sci. Technol. 43 (4):344–355. doi:10.1080/02786820802653763.
[22] Koch, W., and S. K., Friedlander. 1990. The effect of particle coalescence on the surface-area of a coagulating aerosol. J. Colloid Interface Sci. 140 (2):419–427. doi:10.1016/0021-9797(90)90362-R.
[23] Kruis, F. E., K. A., Kusters, S. E., Pratsinis, and B., Scarlett. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci. Technol. 19 (4):514–526. doi:10.1080/02786829308959656.
[24] Ku, B. K., 2010. Determination of the ratio of diffusion charging-based surface area to geometric surface area for spherical particles in the size range of 100–900 nm. J. Aerosol Sci. 41 (9):835–847. doi:10.1016/j.jaerosci.2010.05.008.
[25] Ku, B. K., 2009. Diffusion charger-based aerosol surface-area monitor response to airborne spherical particles 100–800 nm in diameter. In Proceedings of the Abstracts of the 4th International Conference on Nanotechnology—Occupational and Environmental Health, Helsinki, Finland.
[26] Ku, B. K., and A. D., Maynard. 2005. Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging. J. Aerosol Sci. 36 (9):1108–1124. doi:10.1016/j.jaerosci.2004.12.003.
[27] Köylü, Ü. Ö., and G. M., Faeth. 1992. Structure of overfire soot in buoyant turbulent diffusion flames at long residence times. Combustion Flame 89 (2):140–156. doi:10.1016/0010-2180(92)90024-J.
[28] Lall, A. A., and S. K., Friedlander. 2006. On-Line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J. Aerosol Sci. 37 (3):260–271. doi:10.1016/j.jaerosci.2005.05.021.
[29] Li, L., D. R., Chen, and P. J., Tsai. 2009. Use of an electrical aerosol detector (EAD) for nanoparticle size distribution measurement. J. Nanoparticle Res. 11 (1):111–120. doi:10.1007/s11051-008-9418-8.
[30] Liu, Z., S. C., Kim, J., Wang, W. G., Shin, H., Fissan, and D. Y. H., Pui. 2012. Measurement of metal nanoparticle agglomerates generated by spark discharge using the universal nanoparticle analyzer (UNPA). Aerosol Sci. Technol. 46 (3):333–346. doi:10.1080/02786826.2011.626002.
[31] Maynard, A. D., 2003. Estimating aerosol surface area from number and mass concentration measurement. Ann. Occupational Hygiene 47 (2):123–144. doi:10.1093/annhyg/meg022.
[32] Meakin, P., 1988. Fractal aggregates. Adv. Colloid Interface Sci. 28 (4):249–331.
[33] Medalia, A. I., 1967. Morphology of aggregates: I. Calculation of shape and bulkiness factors; application to computer-simulated random flocs. J. Colloid Interface Sci. 24 (3):393–404. doi:10.1016/0021-9797(67)90267-6.
[34] Megaridis, C. M., and R. A., Dobbins. 1990. Morphological description of flame-generated materials. Combustion Sci. Technol. 71 (1–3):95–109. doi:10.1080/00102209008951626.
[35] Nurkiewicz, T. R., D. W., Porter, A. F., Hubbs, S., Stone, B. T., Chen, D. G., Frazer, M. A., Boegehold, and V., Castranova. 2009. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol. Sci. 110 (1):191–203. doi:10.1093/toxsci/kfp051.
[36] Pierre, W., 1987. Hydrodynamic behavior of fractal aggregates. Physical Rev. Lett. 58 (7):710–713.
[37] Pratsinis, S. E., 1998. Flame aerosol synthesis of ceramic powders. Progress Energy Combustion Sci. 24 (3):197–219. doi:10.1016/S0360-1285(97)00028-2.
[38] Rabolli, V., L. C. J., Thomassen, C., Princen, D., Napierska, L., Gonzalez, M., Kirsch-Volders, P. H., Hoet, F., Huaux, C. E. A., Kirschhock, J. A., Martens, and D., Lison. 2010. Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4 (3):307–318. doi:10.3109/17435390.2010.482749.
[39] Rogak, S. N., R. C., Flagan, and H. V., Nguyen. 1993. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18 (1):25–47. doi:10.1080/02786829308959582.
[40] Salvi, S., 2007. Health effects of ambient air pollution in children. Paediatr. Resp. Rev. 8 (4):275–280. doi:10.1016/j.prrv.2007.08.008.
[41] Schmid, O., and T., Stoeger. 2016. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 99:133–143. doi:10.1016/j.jaerosci.2015.12.006.
[42] Seto, T., A., Hirota, T., Fujimoto, M., Shimada, and K., Okuyama. 1997. Sintering of polydisperse nanometer-sized agglomerates. Aerosol Sci. Technol. 27 (3):422–438. doi:10.1080/02786829708965482.
[43] Shin, W. G., J., Wang, M., Mertler, B., Sachweh, H., Fissan, and D. Y. H., Pui. 2010. The effect of particle morphology on unipolar diffusion charging of nanoparticle agglomerates in the transition regime. J. Aerosol Sci. 41 (11):975–986. doi:10.1016/j.jaerosci.2010.07.004.
[44] Sorensen, C. M., 2011. The mobility of fractal aggregates: a review. Aerosol Sci. Technol. 45 (7):765–779. doi:10.1080/02786826.2011.560909.
[45] Stoeger, T., C., Reinhard, S., Takenaka, A., Schroeppel, E., Karg, B., Ritter, J., Heyder, and H., Schulz. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Persp. 114 (3):328–333. doi:10.1289/ehp.8266.
[46] Stone, V., H., Johnston, and M. J. D., Clift. 2007. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans. Nanobiosci. 6 (4):331–340. doi:10.1109/TNB.2007.909005.
[47] Su, L., Q., Ou, L. N. Y., Cao, Q., Du, and D. Y. H., Pui. 2019. A new instrument prototype to measure the geometric surface area of nanoparticles with a time resolution of 1s. J. Aerosol Sci. 132:32–43. doi:10.1016/j.jaerosci.2019.03.007.
[48] Sutherland, D. N., and I., Goodarz-Nia. 1971. Floc simulation: the effect of collision sequence. Chem. Eng. Sci. 26 (12):2071–2085. doi:10.1016/0009-2509(71)80045-3.
[49] Todea, A. M., S., Beckmann, H., Kaminski, and C., Asbach. 2015. Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J. Aerosol Sci. 89:96–109. doi:10.1016/j.jaerosci.2015.07.003.
[50] Tran, C. L., D., Buchanan, R. T., Cullen, A., Searl, A. D., Jones, and K., Donaldson. 2000. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicol. 12 (12):1113–1126.
[51] Wang, G. M., and C. M., Sorensen. 1999. Diffusive mobility of fractal aggregates over the entire knudsen number range. Physical Rev. E 60 (3):3036–3044. doi:10.1103/PhysRevE.60.3036.
[52] Wang, J., W. G., Shin, M., Mertler, B., Sachweh, H., Fissan, and D. Y. H., Pui. 2010. Measurement of nanoparticle agglomerates by combined measurement of electrical mobility and unipolar charging properties. Aerosol Sci. Technol. 44 (2):97–108. doi:10.1080/02786820903401427.
[53] Wei, J. M., 2007. Development of a method for measuring surface area concentration of ultrafine particles. Ph.D. Thesis, University Duisburg-Essen, Germany.
[54] Wei, J. M., F. E., Kruis, and H., Fissan. 2007. A method for measuring surface area concentration of ultrafine particles. In Proceedings of European Aerosol Conference, Salzburg.
[55] Zaitone, B. A., H. J., Schmid, and W., Peukert. 2009. Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth. J. Aerosol Sci. 40 (11):950–964. doi:10.1016/j.jaerosci.2009.08.007.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorOu, Qisheng; Du, Qian
1.Harbin Inst Technol, Sch Energy Sci & Engn, 92 Xidazhi St, Harbin 150001, Heilongjiang, Peoples R China
2.Univ Minnesota, Particle Technol Lab, 111 Church St SE, Minneapolis, MN 55455 USA
3.US FDA, Div Pharmaceut Anal, St Louis, MO USA
4.Chinese Univ Hong Kong , Guangzhou, Guangdong, Peoples R China
Recommended Citation
GB/T 7714
Su, Lipeng,Ou, Qisheng,Cao, Leo N. al. Real-time measurement of nano-agglomerate and aggregate mass and surface area concentrations with a prototype instrument[J]. AEROSOL SCIENCE AND TECHNOLOGY,2019.
APA Su, Lipeng, Ou, Qisheng, Cao, Leo N. Y., Du, Qian, & Pui, David Y. H. (2019). Real-time measurement of nano-agglomerate and aggregate mass and surface area concentrations with a prototype instrument. AEROSOL SCIENCE AND TECHNOLOGY.
MLA Su, Lipeng,et al."Real-time measurement of nano-agglomerate and aggregate mass and surface area concentrations with a prototype instrument".AEROSOL SCIENCE AND TECHNOLOGY (2019).
Files in This Item:
File Name/Size DocType File Type Version Access License
Real-time measuremen(2874KB)Journal article--Published draftRestricted AccessCC BY-NC-SA
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Su, Lipeng]'s Articles
[Ou, Qisheng]'s Articles
[Cao, Leo N. Y.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Su, Lipeng]'s Articles
[Ou, Qisheng]'s Articles
[Cao, Leo N. Y.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Su, Lipeng]'s Articles
[Ou, Qisheng]'s Articles
[Cao, Leo N. Y.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.