Details of Research Outputs

TitleA system-of-systems bio-inspired design process: Conceptual design and physical prototype of a reconfigurable robot capable of multi-modal locomotion
Author (Name in English or Pinyin)
Tan, N.1; Sun, Z.2; Mohan, R.E.3; Brahmananthan, N.3; Venkataraman, S.4; Sosa, R.5; Wood, K.3
Date Issued2019
Source PublicationFrontiers in Neurorobotics
ISSN16625218
DOI10.3389/fnbot.2019.00078
Indexed BySCOPUS
Firstlevel Discipline计算机科学技术
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 13
References
[1] Alexander, R. M. (2006). Principles of Animal Locomotion. Princeton University Press.
[2] Bagheri, H., Taduru, V., Panchal, S., White, S. (2015). Biomimetic and biohybrid systems. Anim. Robot. Locomot. Wet Granul. Media 1, 13–24. doi: 10.1007/978-3-319-63537-8_2
[3] Benyus, J. (1997). Biomimicry - Inovation Inspired by Nature. Harper Perennial.
[4] Cabelguen, J. M., Ijspeert, A., Lamarque, S., and Ryczko, D. (2010). Axial dynamics during locomotion in vertebrates. lesson from the salamander. Prog. Brain Res. 187, 149–162. doi: 10.1016/B978-0-444-53613-6.00010-1
[5] Chan, B., Balmforth, N. J., and Hosoi, A. E. (2005). Building a better snail: lubrication and adhesive locomotion. Phys. Fluids 17, 1–10. doi: 10.1063/1.2102927
[6] Cheng, Y. T., and Rodak, D. E. (2005). Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 1–3. doi: 10.1063/1.1895487
[7] Clark, J., Goldman, D., Lin, P. C., Lynch, G., Chen, T. S., Komsuoglu, H., et al. (2007). Design of a bio-inspired dynamical vertical climbing robot. Robot. Sci. Syst. 9, 9–16. doi: 10.15607/RSS.2007.III.002
[8] Colombo, B. (2007). “Biomimetic design for new technological developments,” in Cumulus Work. Pap., eds E. Salmi, P. Stebbing, G. Burden, L. Anusionwu (Helsinki: University of Art and Design), 29–36.
[9] Eckert, C., and Stacey, M. (2000). Sources of inspiration: a language of design. Des. Stud. 21, 523–538. doi: 10.1016/S0142-694X(00)00022-3
[10] Eroglu, A. K., Erden, Z., and Erden, A. (2011a). “Bioinspired conceptual design (BICD): conceptual design of a grasshopper-like jumping mechanism as a case study,” in ICED 11–18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 10 (Copenhagen), 466–477.
[11] Eroglu, A. K., Erden, Z., and Erden, A. (2011b). “Bioinspired conceptual design (BICD) approach for hybrid Bioinspired robot design process,” in IEEE International Conference on Mechatronics (ICM 2011) (Kuala Lumpur), 905–910. doi: 10.1109/ICMECH.2011.5971243
[12] Floyd, S., Keegan, T., Palmisano, J., and Sitti, M. (2006). “A novel water running robot inspired by basilisk lizards,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (Beijing), 5430–5436. doi: 10.1109/IROS.2006. 282111
[13] French, M. (1994). Invention and Evolution: Design in Nature and Engineering. Cambridge University Press. doi: 10.1017/CBO97805116 24261
[14] Gebo, D. L., and Dagosto, M. (1988). Foot anatomy. climbing, and the origin of the Indriidae. J. Hum. Evol. 17, 135–154. doi: 10.1016/0047-2484(88) 90052-8
[15] Groeneveld, K. (2008). Design and Technology Inspired by Nature: Mercedes-Benz Bionic Car at the Museum of Modern Art in New York. Daimler.
[16] Grzimek’s Animal Life Encyclopedia (2017). Isopoda (Pillbugs, Slaters, and Woodlice) - Dictionary definition of Isopoda (Pillbugs, Slaters, and Woodlice). FREE Online Dictionary (2017). Available online at: Encyclopedia.com
[17] Helms, M., Vattam, S. S., and Goel, A. K. (2009). Biologically inspired design: process and products. Des. Stud. 30, 606–622. doi: 10.1016/j.destud.2009. 04.003
[18] Huxley, T. H. (1875). On the classification of the animal kingdom. Am. Nat. 9, 65–70. doi: 10.1086/271442
[19] Jenkins, F. A. J. (2012). Primate Locomotion. Elsevier Science.
[20] King, R. S. (2013). A Biologically Inspired Robot with Walking and Rolling Locomotion. Berlin; Heidelberg: Springer-Verlag, 25–26.
[21] Kissling, B. M. (2004). The Best Way To..., Today’s Creat. Homearts 3, 38–39.
[22] Kuroda, S., Kunita, I., Tanaka, Y., Ishiguro, A., Kobayashi, R., and Nakagaki, T. (2014). Common mechanics of mode switching in locomotion of limbless and legged animals. J. R. Soc. Interface 11:20140205. doi: 10.1098/rsif.2014. 0205
[23] Leroy, A., and Leroy, J. (2003). Spiders of Southern Africa. Cape Town: Struik.
[24] Lindemann, U., and Gramann, J. (2004). “Engineering design using biological principles,” in Design 2004 International Design Conference (Dubrovnik), 1–6.
[25] Lock, R. J., Burgess, S. C., and Vaidyanathan, R. (2013). Multi-modal locomotion: from animal to application. Bioinspir. Biomim. 9:11001. doi: 10.1088/1748-3182/9/1/011001
[26] López-Mesa, B. (2011). Selection and Use of Engineering Design Methods Using Creative Problem Solving. Luleå: Luleå University Technology.
[27] Manohar, N., Subrahmanya, S., Bharathi, R. K., Sharath, Y., Hemantha, K. (2016). “Recognition and classification of animals based on texture features through parallel computing,” in 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP) (Mysuru), 1–5. doi: 10.1109/CCIP.2016.7802872
[28] Marvi, H., and Hu, D. L. (2012). Friction enhancement in concertina locomotion of snakes. J. R. Soc. Interface 9, 3067–3080. doi: 10.1098/rsif.2012.0132
[29] Mas, F., Ríos, J., and Menéndez, J. L. (2012). Conceptual design of an aircraft final assembly line: a case study. Key Eng. Mater. 502, 49–54. doi: 10.4028/www.scientific.net/KEM.502.49
[30] McPherson, S. M. (2011). Fukushima Nuclear Power Plant - iRobot 510 Packbot. Available online at: https://www.popularmechanics.com/military/a6656/howbattle-tested-robots-are-helping-out-at-fukushima-5586925/
[31] Menon, P. (2016). Black Hornet Military Night Vision Camera/All-Weather Nano Drone. camera SLY.
[32] Mintchev, S., and Floreano, D. (2016). Adaptive morphology: a design principle for multimodal and multifunctional robots. IEEE Robot. Autom. Mag. 23, 42–54. doi: 10.1109/MRA.2016.2580593
[33] Muggah, R. (2016). Is Urban Terrorism the New Normal? Probably | World Economic Forum. World Economic Forum.
[34] Muller, G., Bjørnsen, H. H., and Pennotti, M. (2011). “Researching the application of pugh matrix in the sub-sea equipment industry,” in 2011 Conference on Systems Engineering Research (Redondo Beach, CA).
[35] Murakami, T., and Nakajima, N. (1997). Mechanism concept retrieval using configuration space. Res. Eng. Des. 9, 99–111. doi: 10.1007/BF015 96485
[36] Nemoto, T., Elara, M. R., Nansai, S., and Iwase, M. (2015). “Wheel spider with rolling locomotion: modeling and simulation,” in ICARA 2015 - Proceedings 2015 6th International Conference on Automation, Robotics and Applications (Queenstown), 337–342. doi: 10.1109/ICARA.2015.70 81170
[37] Prostak, S. (2014). Cebrennus rechenbergi: Cartwheeling Spider Discovered in Morocco. Available online at: http://www.sci-news.com/biology/sciencecebrennus-rechenbergi-spider-morocco-01903.html
[38] ROBOTEAM (2012). ROBOTEAM to Exhibit Range of Unmanned Robotic Solutions at AUSA 2012. Unmanned Systems Technology.
[39] Roy, B. (1991). The outranking approach and the foundations of electre methods. Theory Decision 31, 49–73. doi: 10.1007/BF001 34132
[40] Saaty, T. (2013). “Analytic hierarchy process,” in Encyclopedia of Operations Research and Management Science, eds S. I. Gass and M. C. Fu (Boston, MA: Springer), 52–64. doi: 10.1007/978-1-4419-1153-7_31
[41] Santori, R. T., Rocha-Barbosa, O., Vieira, M. V., Magnan-Neto, J. (2005). Locomotion in aquatic, terrestrial, and arboreal habitat of thick-tailed opossum, Lutreolina crassicaudata (Desmarest, 1804). J. Mammal. 86, 902–908. doi: 10. 1644/1545-1542(2005)86[902:LIATAA]2.0.CO;2
[42] Shane, S. H., Wells, R. S., and Würsig, B. (1986). Ecology, behavior and social organization of the bottlenose dolphin: a review. Mar. Mammal Sci. 2, 34–63. doi: 10.1111/j.1748-7692.1986.tb00026.x
[43] Sitti, M., and Fearing, R. S. (2003). Synthetic gecko foot-hair micro / nano-structures for future wall-climbing robots. Imaging 1, 1164–1170. doi: 10.1109/ROBOT.2003.1241750
[44] Spolenak, R., Gorb, S., Gao, H., and Arzt, E. (2005). Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A Math. Phys. Eng. Sci. 461, 305–319. doi: 10.1098/rspa.2004.1326
[45] Steigerwald, J. (2015). Israeli Robotics Expert: West 10 Years Ahead of ‘Enemy’ in Warfare Technology - Business & Innovation - Jerusalem Post. Business & Innovation on Jerusalem Post.
[46] Tan, N., Mohan, K., and Elangovan, R. E. (2016). Scorpio: a biomimetic reconfigurable rolling-crawling robot. Int. J. Adv. Robot. Syst. 13, 1–16. doi: 10. 1177/1729881416658180
[47] Ulrich, K. T., and Eppinger, S. D. (1995). Product Design and Development, 5th Edn. McGraw-Hill Education.
[48] Vattam, S., Helms, M., and Goel, A., K. (2007). Biologically-Inspired Innovation in Engineering Design: A Cognitive Study.
[49] Versos, C. A. M., and Coelho, D. A. (2011). “Biologically inspired design: methods and validation,” in Industrial Design - New Frontiers, ed D. Coelho (InTech, RFID Technol. Secur. Vulnerabilities, Countermeas.), 101–120.
[50] Vincent, J., and Man, D. (2002). Systematic technology transfer from biology to engineering. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 360, 159–173. doi: 10.1098/rsta.2001.0923
[51] Yanagida, T., Mohan, R. E., Pathmakumar, T., Elangovan, K., and Iwase, M. (2017). Design and implementation of a shape shifting rolling-crawling-wall-climbing robot. Appl. Sci. 7:342. doi: 10.3390/app7040342
[52] Zari, M. P. (2007). “Biomimetic approaches to architectural design for increased sustainability,” in The SB07 NZ Sustainable Building Conference (Auckland).
Citation statistics
Cited Times:6[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1190
CollectionSchool of Science and Engineering
Corresponding AuthorTan, N.; Sun, Z.
Affiliation
1.Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2.School of Science and Engineering, Chinese University of Hong Kong, Shenzhen Institute of Artificial, Shenzhen, China
3.Engineering Products Development Pillar, Singapore University of Technology and Design, Singapore, Singapore
4.Department of Design, Indian Institute of Technology Delhi, New Delhi, India
5.Art Design and Architecture, Monash University, Melbourne, VIC, Australia
Corresponding Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Tan, N.,Sun, Z.,Mohan, R.E.et al. A system-of-systems bio-inspired design process: Conceptual design and physical prototype of a reconfigurable robot capable of multi-modal locomotion[J]. Frontiers in Neurorobotics,2019.
APA Tan, N., Sun, Z., Mohan, R.E., Brahmananthan, N., Venkataraman, S., .. & Wood, K. (2019). A system-of-systems bio-inspired design process: Conceptual design and physical prototype of a reconfigurable robot capable of multi-modal locomotion. Frontiers in Neurorobotics.
MLA Tan, N.,et al."A system-of-systems bio-inspired design process: Conceptual design and physical prototype of a reconfigurable robot capable of multi-modal locomotion".Frontiers in Neurorobotics (2019).
Files in This Item:
File Name/Size DocType File Type Version Access License
A system-of-systems (1794KB)Journal article--Published draftRestricted AccessCC BY-NC-SA
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Tan, N.]'s Articles
[Sun, Z.]'s Articles
[Mohan, R.E.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Tan, N.]'s Articles
[Sun, Z.]'s Articles
[Mohan, R.E.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Tan, N.]'s Articles
[Sun, Z.]'s Articles
[Mohan, R.E.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.