Details of Research Outputs

TitleTensor-based blind fMRI source separation without the Gaussian noise assumption - A β-divergence approach
Author (Name in English or Pinyin)
Chatzichristos, C.1; Vandecapelle, M.1,2; Kofidis, E.3; Theodoridis, S.4,5; Lathauwer, L.D.1,2; Van Huffel, S.1
Date Issued2019-11-01
Source PublicationGlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings
DOI10.1109/GlobalSIP45357.2019.8969150
Indexed BySCOPUS
Firstlevel Discipline计算机科学技术
Education discipline科技类
Published range国外学术期刊
References
[1] M. A. Lindquist, "The statistical analysis of fMRI data, " Statistical Science, vol. 23, no. 4, pp. 439-464, Jun. 2008.
[2] P. Wright, "Magnetic Resonance Imaging, " IEEE Signal Process. Mag., vol. 14, no. 1, pp. 56-66, Jan. 1997.
[3] D. B. Rowe and B. R. Logan, "An fMRI activation method using complex data, " in IEEE Int. Symposium Biomed. Imag. Nano to Macro, Arlington, VA, USA, Apr. 2004.
[4] H. Gudbjartsson and S. Patz, "The Rician distribution of noisy MRI data, " Magn. Res. Med., vol. 34, no. 6, pp. 910-914, Feb. 1995.
[5] J. Sijbers, A. den Dekker, J. V. Audekerke, M. Verhoye, and D. V. Dyck, "Estimation of the noise in magnitude MR images, " Magn. Reson. Imag., vol. 16, no. 1, pp. 87-90, Jan. 1998.
[6] D. Varadarajan and J. P. Haldar, "A majorize-minimize framework for Rician and non-central chi MR images, " IEEE Trans. Medical Imag., vol. 34, no. 10, pp. 2191-2202, Oct. 2015.
[7] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective. Academic Press, 2015.
[8] A. H. Andersen and W. S. Rayens, "Structure-seeking multilinear methods for the analysis of fMRI data, " NeuroImage, vol. 22, no. 2, pp. 728-739, Jun. 2004.
[9] V. D. Calhoun and T. Adali, "Unmixing fMRI with independent component analysis, " IEEE Eng. Med. Biol. Mag., vol. 25, no. 2, pp. 79-90, Mar. 2006.
[10] L. Kangjoo, S. Tak, and J. C. Ye, "A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion, " IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1076-1089, Dec. 2011.
[11] N. Sidiropoulos and R. Bro, "On the uniqueness of multilinear decomposition of N-way arrays, " J. Chemometrics, vol. 14, no. 3, pp. 229-239, May 2000.
[12] A. Stegeman, "Comparing Independent Component Analysis and the PARAFAC model for artificial multi-subject fMRI data, " Unpublished Technical Report, Univ. of Groeningen, Feb. 2007.
[13] N. E. Helwig and S. Hong, "A critique of Tensor Probabilistic Independent Component Analysis: implications and recommendations for multi-subject fMRI data analysis, " J. Neuroscience Methods, vol. 213, no. 2, pp. 263-273, Mar. 2013.
[14] C. F. Beckmann and S. M. Smith, "Tensorial extensions of independent component analysis for multisubject fMRI analysis, " NeuroImage, vol. 25, no. 1, pp. 294-311, Mar. 2005.
[15] K. Madsen, N. W. Churchill, and M. Mørup, "Quantifying functional connectivity in multi-subject fMRI data using component models, " Human Brain Mapping, vol. 38, no. 2, pp. 882-899, Oct. 2016.
[16] C. Chatzichristos, E. Kofidis, Y. Kopsinis, M. M. Moreno, and S. Theodoridis, "Higher-order block term decomposition for spatially folded fMRI data, " in Latent Variable Analysis and Signal Separation Conf. (LVA/ICA), Grenoble, France, Feb. 2017.
[17] R. A. Harshman, "Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis, " UCLA Work. Papers in Phonetics, pp. 1-84, 1970.
[18] S. Aja-Fernández, G. Vegas-Sánchez-Ferrero, and A. Tristán-Vega, "Noise estimation in parallel MRI: GRAPPA and SENSE, " Magn. Reson. Med., vol. 32, no. 3, pp. 281-290, Apr. 2014.
[19] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos, "Tensor decomposition for signal processing and machine learning, " IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3551-3582, Jul. 2017.
[20] J. B. Kruskal, "Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, " Linear Algebra and Its Applications, vol. 18, pp. 95-138, 1977.
[21] I. Domanov and L. De Lathauwer, "On the uniqueness of the canonical polyadic decomposition of third-order tensors-Parts I-II, " SIAM J. Matrix Anal. Appl., vol. 34, no. 3, pp. 855-903, Mar. 2013.
[22] C. Chatzichristos, E. Kofidis, M. M. Moreno, and S. Theodoridis, "Blind fMRI source unmixing via higher-order tensor decompositions, " J. Neuroscience Methods, vol. 315, pp. 17-47, Mar. 2019.
[23] R. Bro and H. Kiers, "A new efficient method for determining the number of components in PARAFAC models, " J. Chemometrics, vol. 17, no. 5, pp. 274-286, May 2003.
[24] J. L. Castellanos, S. Gómez, and V. Guerra, "The triangle method for finding the corner of the L-curve, " Appl. Numer. Math., vol. 43, no. 4, pp. 359-373, Dec. 2002.
[25] R. Hennequin, B. David, and R. Badeau, "Beta-divergence as a subclass of Bregman divergence, " IEEE Signal Process. Letters, vol. 18, no. 2, pp. 83-86, Feb. 2011.
[26] C. Févotte, N. Bertin, and J.-L. Durrieu, "Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis, " Neural Comput., vol. 21, no. 3, pp. 793-830, Mar. 2009.
[27] S. Ferdowsi, V. AbolFghasemi, and S. Sanei, "A comparative study of -divergence based NMF techniques for fMRI analysis, " in Eur. Signal Process. Conf. (EUSIPCO), Barcelona, Spain, Sep. 2011.
[28] A. M. Wink and J. B. Roerdink, "BOLD noise assumptions in fMRI, " Int. J. of Biomed. Imag., doi: 10. 1155/IJBI/2006/12014, 2006.
[29] L. Lauwers and K. Barbé, "General linear models under Rician noise for fMRI data, " in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2015), Brisbane, QLD, Australia, Apr. 2015.
[30] D. Hong, T. G. Kolda, and J. A. Duersch, "Generalized canonical polyadic tensor decomposition, " arXiv: 1808. 07452, Jan. 2019.
[31] C. Févotte and A. Ozerov, "Notes on nonnegative tensor factorization of the spectrogram for audio source separation: statistical insights and towards self-clustering of the spatial cues, " in Int. Symposium Computer Music Modeling Retrieval (CMMR 2010), Málaga, Spain, Jun. 2010.
[32] A. Cichocki and A.-H. Phan, "Fast local algorithms for large scale nonnegative matrix and tensor factorizations, " IEICE Trans. Fund. Electr., Commun. Comp. Sciences, vol. 92, no. 3, pp. 708-721, Mar. 2009.
[33] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, "Canonical polyadic decomposition with general cost functions using generalized Gauss-Newton, " Internal Report 19-05, ESAT-STADIUS, KU Leuven (Leuven, Belgium), May 2019.
[34] V. D. Calhoun, T. Adali, G. D. Pearlson, P. C. M. Van Zijl, and J. Pekar, "Independent component analysis of fMRI data in the complex domain, " Magn. Reson. Med., vol. 48, no. 1, pp. 180-192, Jul. 2002.
[35] F. G. Hoogenrad, J. R. Reichenbach, E. M. Haacke, S. Lai, K. Kuppusamy, and M. Sprenger, "In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at. 95 Tesla by measuring changes in susceptibility and velocity, " Magn. Reson. Med., vol. 39, no. 1, pp. 97-107, Jul. 1998.
[36] G. Naik and W. Wang, Blind Source Separation Advances in Theory, Algorithms and Applications. Springer, 2014.
[37] L. De Lathauwer, "Decompositions of a higher-order tensor in block terms-Part I-III, " SIAM J. Matrix Anal. Appl., vol. 30, pp. 1022-1083, Sep. 2008.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1194
CollectionSchool of Science and Engineering
Co-First AuthorVandecapelle, M.
Corresponding AuthorChatzichristos, C.
Affiliation
1.KU Leuven, Department of Electrical Engineering (ESAT), Leuven, Belgium
2.KU Leuven Kulak, Group Science, Engineering and Technology, Kortrijk, Belgium
3.Dept. of Statistics and Insurance Science, University of Piraeus, Greece
4.Dept. of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece
5.Chinese University of Hong Kong, Shenzhen, China
Recommended Citation
GB/T 7714
Chatzichristos, C.,Vandecapelle, M.,Kofidis, E.et al. Tensor-based blind fMRI source separation without the Gaussian noise assumption - A β-divergence approach[J]. GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings,2019.
APA Chatzichristos, C., Vandecapelle, M., Kofidis, E., Theodoridis, S., Lathauwer, L.D., & Van Huffel, S. (2019). Tensor-based blind fMRI source separation without the Gaussian noise assumption - A β-divergence approach. GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings.
MLA Chatzichristos, C.,et al."Tensor-based blind fMRI source separation without the Gaussian noise assumption - A β-divergence approach".GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Chatzichristos, C.]'s Articles
[Vandecapelle, M.]'s Articles
[Kofidis, E.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Chatzichristos, C.]'s Articles
[Vandecapelle, M.]'s Articles
[Kofidis, E.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chatzichristos, C.]'s Articles
[Vandecapelle, M.]'s Articles
[Kofidis, E.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.