Details of Research Outputs

TitleMagnetic Skyrmion Tubes as Nonplanar Magnonic Waveguides
Author (Name in English or Pinyin)
Xing, Xiangjun1; Zhou, Yan2,3; Braun, H. B.4
Date Issued2020-03-19
Source PublicationPhysical Review Applied
Indexed BySCIE
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 13 期: 3
[1] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics, J. Phys. D: Appl. Phys. 43, 264001 (2010). 0022-3727 10.1088/0022-3727/43/26/264001
[2] A. Chumak, V. Vasyuchka, A. Serga, and B. Hillebrands, Magnon spintronics, Nat. Phys. 11, 453 (2015). 1745-2473 10.1038/nphys3347
[3] B. Lenk, H. Ulrichs, F. Garbs, and M. Munzenberg, The building blocks of magnonics, Phys. Rep. 507, 107 (2011). 0370-1573 10.1016/j.physrep.2011.06.003
[4] The International Roadmap for Devices and Systems, 2017 Edition, " Beyond CMOS ",
[5] A. Khitun, Magnonic holographic devices for special type data processing, J. Appl. Phys. 113, 164503 (2013). 0021-8979 10.1063/1.4802656
[6] A. Kozhevnikov, F. Gertz, G. Dudko, Y. Filimonov, and A. Khitun, Pattern recognition with magnonic holographic memory device, Appl. Phys. Lett. 106, 142409 (2015). 0003-6951 10.1063/1.4917507
[7] M. Romera, P. Talatchian, S. Tsunegi, F. Abreu Araujo, V. Cros, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz, and J. Grollier, Vowel recognition with four coupled spin-torque nano-oscillators, Nature 563, 230 (2018). 0028-0836 10.1038/s41586-018-0632-y
[8] F. Garcia-Sanchez, P. Borys, R. Soucaille, J.-P. Adam, R. L. Stamps, and J.-V. Kim, Narrow Magnonic Waveguides Based on Domain Walls, Phys. Rev. Lett. 114, 247206 (2015). 0031-9007 10.1103/PhysRevLett.114.247206
[9] X. Xing and Y. Zhou, Fiber optics for spin waves, NPG Asia Mater. 8, e246 (2016). 1884-4049 10.1038/am.2016.25
[10] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian, and H. Schultheiss, Magnetic domain walls as reconfigurable spin-wave nanochannels, Nat. Nanotechnol. 11, 432 (2016). 1748-3387 10.1038/nnano.2015.339
[11] E. Albisetti, D. Petti, G. Sala, R. Silvani, S. Tacchi, S. Finizio, S. Wintz, A. Calò, X. Zheng, J. Raabe, E. Riedo, and R. Bertacco, Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures, Commun. Phys. 1, 56 (2018). 2399-3650 10.1038/s42005-018-0056-x
[12] J. Lan, W. Yu, R. Wu, and J. Xiao, Spin-wave diode, Phys. Rev. X 5, 041049 (2015). 2160-3308 10.1103/PhysRevX.5.041049
[13] X. Xing, P. W. T. Pong, J. Åkerman, and Y. Zhou, Paving Spin-Wave Fibers in Magnonic Nanocircuits Using Spin-Orbit Torque, Phys. Rev. Appl. 7, 054016 (2017). 2331-7019 10.1103/PhysRevApplied.7.054016
[14] A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, and R. P. Cowburn, Three-dimensional nanomagnetism, Nat. Commun. 8, 15756 (2017). 2041-1723 10.1038/ncomms15756
[15] R. Hertel, Ultrafast domain wall dynamics in magnetic nanotubes and nanowires, J. Phys. Condens. Matter 28, 483002 (2016). 0953-8984 10.1088/0953-8984/28/48/483002
[16] R. Lavrijsen, J. H. Lee, A. Fernandez-Pacheco, D. Petit, R. Mansell, and R. P. Cowburn, Magnetic ratchet for three-dimensional spintronic memory and logic, Nature 493, 647 (2013). 0028-0836 10.1038/nature11733
[17] S. S. P. Parkin, H. Masamitsu, and L. Thomas, Magnetic domain-wall racetrack memory, Science 320, 190 (2008). 0036-8075 10.1126/science.1145799
[18] S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Skyrmion lattice in a chiral magnet, Science 323, 915 (2009). 0036-8075 10.1126/science.1166767
[19] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of skyrmions in a multiferroic material, Science 336, 198 (2012). 0036-8075 10.1126/science.1214143
[20] Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Ronnow, D. Morikawa, Y. Taguchi, and Y. Tokura, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun. 6, 7638 (2015). 2041-1723 10.1038/ncomms8638
[21] I. Kezsmarki, S. Bordacs, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Ronnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl, Neél-type skyrmion lattice with confined orientation in the polar magnetic semiconductor (Equation presented), Nat. Mater. 14, 1116 (2015). 1476-1122 10.1038/nmat4402
[22] T. Kurumaji, T. Nakajima, V. Ukleev, A. Feoktystov, T. Arima, K. Kakurai, and Y. Tokura, Neél-Type Skyrmion Lattice in the Tetragonal Polar Magnet (Equation presented), Phys. Rev. Lett. 119, 237201 (2017). 0031-9007 10.1103/PhysRevLett.119.237201
[23] A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, Magnetic antiskyrmions above room temperature in tetragonal heusler materials, Nature 548, 561 (2017). 0028-0836 10.1038/nature23466
[24] N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8, 899 (2013). 1748-3387 10.1038/nnano.2013.243
[25] R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics, Nat. Rev. Mater. 1, 16044 (2016). 2058-8437 10.1038/natrevmats.2016.44
[26] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2, 15 (2017). 2058-8437 10.1038/natrevmats.2017.31
[27] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, A strategy for the design of skyrmion racetrack memories, Sci. Rep. 4, 6784 (2014). 2045-2322 10.1038/srep06784
[28] X. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions, Sci. Rep. 5, 9400 (2015). 2045-2322 10.1038/srep09400
[29] X. Zhang, Y. Zhou, M. Ezawa, G. P. Zhao, and W. Zhao, Magnetic skyrmion transistor: Skyrmion motion in a voltage-gated nanotrack, Sci. Rep. 5, 11369 (2015). 2045-2322 10.1038/srep11369
[30] M. Mochizuki, Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals, Phys. Rev. Lett. 108, 017601 (2012). 0031-9007 10.1103/PhysRevLett.108.017601
[31] C. K. Kao, Sand from centuries past: Send future voices fast, Nobel Lecture,
[32] I. E. Dzyaloshinskii, Thermodynamic theory of 'weak' ferromagnetism in antiferromagnetic substances, Sov. Phys. JETP 5, 1259 (1957).
[33] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960). 0031-899X 10.1103/PhysRev.120.91
[34] A. N. Bogdanov and D. A. Yablonskii, Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets, Sov. Phys. JETP 68, 101 (1989).
[35] D. Cortés-Ortunõ, M. Beg, V. Nehruji, L. Breth, R. Pepper, T. Kluyver, G. Downing, T. Hesjedal, P. Hatton, T. Lancaster, R. Hertel, O. Hovorka, and H. Fangohr, Proposal for a micromagnetic standard problem for materials with dzyaloshinskii-moriya interaction, New J. Phys. 20, 113015 (2018). 1367-2630 10.1088/1367-2630/aaea1c
[36] The DMI energy, E DM, for the bulk-and D 2 d-type DMIs read: E DM =∫ D m · (â‡ × m) d 3 r and E DM =∫ D m · (∂ m/∂ x × êx-∂ m/∂ y × êy) d 3 r, respectively.
[37] See the Supplemental Material at for the two-dimensional slices of 3D magnetization distribution of a skyrmion tube, showing its surface reconstruction (Section A), the magnon propagation patterns and mode profiles at several additional frequencies (Section B), and some extended results based on the material parameters of experimentally available (Equation presented) lamellae (Section C).
[38] S. L. Zhang, G. van der Laan, W. W. Wang, A. A. Haghighirad, and T. Hesjedal, Direct Observation of Twisted Surface Skyrmions in Bulk Crystals, Phys. Rev. Lett. 120, 227202 (2018). 0031-9007 10.1103/PhysRevLett.120.227202
[39] A. O. Leonov, Y. Togawa, T. L. Monchesky, A. N. Bogdanov, J. Kishine, Y. Kousaka, M. Miyagawa, T. Koyama, J. Akimitsu, Ts. Koyama, K. Harada, S. Mori, D. McGrouther, R. Lamb, M. Krajnak, S. McVitie, R. L. Stamps, and K. Inoue, Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets, Phys. Rev. Lett. 117, 087202 (2016). 0031-9007 10.1103/PhysRevLett.117.087202
[40] M. J. Donahue and D. G. Porter, OOMMF User's Guide Version 1.0 Interagency Report NISTIR 6376, National Institute of Standards and Technology: Gaitherburg, MD, (1999).
[41] In this theoretical study, the antenna is factitiously embedded into the prism without breaking the sample, for a direct comparison of the oppositely propagating spin waves. In a realistic device, such an insertion is impossible, unless the prism is cut into two pieces. Thus, in an experimental study, one can place the antenna on top of a square surface of the prism.
[42] We note that α = 0.01 is a very low value for known DMI materials. Choosing such a low value in a computational study. 8-10,12 enables strong excitation and long-distance propagation of spin waves, without modifying the key physics, and therefore, is favorable for the identification of the mode structures of spin waves. The pioneering theoretical works. 8,9,12 of domain-wall-based magnonic waveguides also assumed low damping values for DMI materials.
[43] D. V. Berkov and N. L. Gorn, Micromagnetic simulations of the magnetization precession induced by a spin-polarized current in a point-contact geometry (invited), J. Appl. Phys. 99, 08Q701 (2006). 0021-8979 10.1063/1.2151800
[44] Usually, the breathing and rotational modes are activated separately by using excitation fields with distinct spatial symmetries: The breathing mode is excited through an out-of-plane field, while that of the rotational mode is via an in-plane field in a certain direction. [45]. The excitation field used in our study has the correct symmetry to activate the breathing mode of skyrmion tubes and, because of the inherent symmetry of antiskyrmion tubes, it can also activate the rotational modes of antiskyrmion tubes. Furthermore, our excitation field can be readily created by using a thin toroidal antenna in practical experiments. By contrast, the out-of-plane field cannot be easily realized experimentally by using an antenna, and the in-plane field cannot excite the breathing modes.
[45] B. F. Miao, Y. Wen, M. Yan, L. Sun, R. X. Cao, D. Wu, B. You, Z. S. Jiang, and H. F. Ding, Micromagnetic study of excitation modes of an artificial skyrmion crystal, Appl. Phys. Lett. 107, 222402 (2015). 0003-6951 10.1063/1.4936756
[46] M. Dvornik, Y. Au, and V. V. Kruglyak, Magnonics: Micromagnetic simulations in magnonics, Top. Appl. Phys. 125, 101 (2013). 0303-4216 10.1007/978-3-642-30247-3-8
[47] C. J. Garciá-Cervera, Z. Gimbutas, and E. Weinan, Accurate numerical methods for micromagnetics simulations with general geometries, J. Comput. Phys. 184, 37 (2003). 0021-9991 10.1016/S0021-9991(02)00014-1
[48] F. Garcia-Sanchez, P. Borys, A. Vansteenkiste, J. V. Kim, and R. L. Stamps, Nonreciprocal spin-wave channeling along textures driven by the Dzyaloshinskii-Moriya interaction, Phys. Rev. B 89, 224408 (2014). 1098-0121 10.1103/PhysRevB.89.224408
[49] M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff, N. S. Kiselev, C. Melcher, and S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions, Nat. Commun. 8, 308 (2017). 2041-1723 10.1038/s41467-017-00313-0
[50] J. Jorzick, S. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K. Guslienko, A. Slavin, D. Berkov, and N. Gorn, Spin Wave Wells in Nonellipsoidal Micrometer Size Magnetic Elements, Phys. Rev. Lett. 88, 047204 (2002). 0031-9007 10.1103/PhysRevLett.88.047204
[51] S.-Z. Lin, J.-X. Zhu, and A. Saxena, Kelvin modes of a skyrmion line in chiral magnets and the associated magnon transport, Phys. Rev. B 99, 140408(R) (2019). (arXiv:1901.03812). 2469-9950 10.1103/PhysRevB.99.140408
[52] V. E. Demidov, S. O. Demokritov, K. Rott, P. Krzysteczko, and G. Reiss, Mode interference and periodic self-focusing of spin waves in permalloy microstripes, Phys. Rev. B 77, 064406 (2008). 1098-0121 10.1103/PhysRevB.77.064406
[53] X. Xing, S. Li, X. Huang, and Z. Wang, Engineering spin-wave channels in submicrometer magnonic waveguides, AIP Adv. 3, 032144 (2013). 2158-3226 10.1063/1.4799738
[54] V. P. Kravchuk, U. K. Rößler, J. van den Brink, and M. Garst, Solitary wave excitations of skyrmion strings in chiral magnets, arXiv:1902.01420.
[55] R. Takagi, D. Morikawa, K. Karube, N. Kanazawa, K. Shibata, G. Tatara, Y. Tokunaga, T. Arima, Y. Taguchi, Y. Tokura, and S. Seki, Spin-wave spectroscopy of the dzyaloshinskii-moriya interaction in room-temperature chiral magnets hosting skyrmions, Phys. Rev. B 95, 220406 (2017). 2469-9950 10.1103/PhysRevB.95.220406
[56] K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, Heusler, weyl and berry, Nat. Rev. Mater. 3, 244 (2018). 2058-8437 10.1038/s41578-018-0036-5
[57] O. Gaier, J. Hamrle, S. Trudel, A. C. Parra, B. Hillebrands, E. Arbelo, C. Herbort, and M. Jourdan, Brillouin light scattering study of (Equation presented) and (Equation presented) heusler compounds, J. Phys. D: Appl. Phys. 42, 084004 (2009). 0022-3727 10.1088/0022-3727/42/8/084004
[58] M. T. Birch, D. Cortés-Ortunõ, L. A. Turnbull, M. N. Wilson, F. Groß, N. Träger, A. Laurenson, N. Bukin, S. H. Moody, M. Weigand, G. Schütz, H. Popescu, R. Fan, P. Steadman, J. A. T. Verezhak, G. Balakrishnan, J. C. Loudon, A. C. Twitchett-Harrison, O. Hovorka, H. Fangohr, F. Ogrin, J. Gräfe, P. D. Hatton, Real-space imaging of confined magnetic skyrmion tubes, arXiv:1909.04528.
[59] S. Seki, M. Garst, J. Waizner, R. Takagi, N. D. Khanh, Y. Okamura, K. Kondou, F. Kagawa, Y. Otani, and Y. Tokura, Propagation dynamics of spin excitations along skyrmion strings, Nat. Commun. 11, 256 (2020). (arXiv:1902.10302). 2041-1723 10.1038/s41467-019-14095-0
[60] B. Rana and Y. Otani, Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices, Phys. Rev. Appl. 9, 014033 (2018). 2331-7019 10.1103/PhysRevApplied.9.014033
[61] F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, Experimental observation of chiral magnetic bobbers in B20-type (Equation presented), Nat. Nanotechnol. 13, 451 (2018). 1748-3387 10.1038/s41565-018-0093-3
[62] A. O. Leonov and K. Inoue, Homogeneous and heterogeneous nucleation of skyrmions in thin layers of cubic helimagnets, Phys. Rev. B 98, 054404 (2018). 2469-9950 10.1103/PhysRevB.98.054404
[63] K. Vogt, F. Fradin, J. Pearson, T. Sebastian, S. Bader, B. Hillebrands, A. Hoffmann, and H. Schultheiss, Realization of a spin-wave multiplexer, Nat. Commun. 5, 3727 (2014). 2041-1723 10.1038/ncomms4727
[64] P. Milde, D. Köhler, J. Seidel, L. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, and S. Buhrandt, Unwinding of a skyrmion lattice by magnetic monopoles, Science 340, 1076 (2013). 0036-8075 10.1126/science.1234657
Citation statistics
Cited Times:22[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorXing, Xiangjun
1.Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
3.Foshan Univ, Sch Mat Sci & Energy Engn, Foshan 528000, Guangdong, Peoples R China
4.Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
Recommended Citation
GB/T 7714
Xing, Xiangjun,Zhou, Yan,Braun, H. B. Magnetic Skyrmion Tubes as Nonplanar Magnonic Waveguides[J]. Physical Review Applied,2020.
APA Xing, Xiangjun, Zhou, Yan, & Braun, H. B. (2020). Magnetic Skyrmion Tubes as Nonplanar Magnonic Waveguides. Physical Review Applied.
MLA Xing, Xiangjun,et al."Magnetic Skyrmion Tubes as Nonplanar Magnonic Waveguides".Physical Review Applied (2020).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Xing, Xiangjun]'s Articles
[Zhou, Yan]'s Articles
[Braun, H. B.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xing, Xiangjun]'s Articles
[Zhou, Yan]'s Articles
[Braun, H. B.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xing, Xiangjun]'s Articles
[Zhou, Yan]'s Articles
[Braun, H. B.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.