Details of Research Outputs

TitleDesign, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists
Author (Name in English or Pinyin)
Fang, X.1; Meng, Q.1; Zhang, H.1; Liang, B.2; Zhu, S.1; Wang, J.2; Zhang, C.3; Huang, L.S.3; Zhang, X.3; Schooley, R.T.3; An, J.3; Xu, Y.1,4; Huang, Z.1
Date Issued2020-08-15
Firstlevel Discipline生物学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 200
[1] Choi, W.T., Duggineni, S., Xu, Y., Huang, Z., An, J., Drug discovery research targeting the CXC chemokine receptor 4 (CXCR4). J. Med. Chem. 55 (2012), 977–994.
[2] Choi, W.-T., Yang, Y., Xu, Y., An, J., Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and metastasis. Curr. Top. Med. Chem. 14 (2014), 1574–1589.
[3] Busillo, J.M., Benovic, J.L., Regulation of CXCR4 signaling. Biochim. Biophys. Acta 1768 (2007), 952–963.
[4] Teicher, B.A., Fricker, S.P., CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Canc. Res. 16 (2010), 2927–2931.
[5] Wright, D.E., Bowman, E.P., Wagers, A.J., Butcher, E.C., Weissman, I.L., Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med. 195 (2002), 1145–1154.
[6] Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf, D.J., Zhang, J., Ratajczak, J., Ratajczak, M.Z., CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 35 (2004), 233–245.
[7] Mishan, M.A., Ahmadiankia, N., Bahrami, A.R., CXCR4, CCR7: two eligible targets in targeted cancer therapy. Cell Biol. Int. 40 (2016), 955–967.
[8] Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., Ratajczak, J., Ratajczak, M.Z., Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 Axis. Stem Cell. 23 (2005), 879–894.
[9] Karpova, D., Bonig, H., Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis-lessons from pharmacological and genetic models. Stem Cell. 33 (2015), 2391–2399.
[10] Susek, K.H., Karvouni, M., Alici, E., Lundqvist, A., The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment. Front. Immunol., 9, 2018, 2159.
[11] Nagarsheth, N., Wicha, M.S., Zou, W., Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17 (2017), 559–572.
[12] Domanska, U.M., Kruizinga, R.C., Nagengast, W.B., Timmer-Bosscha, H., Huls, G., de Vries, E.G.E., Walenkamp, A.M.E., A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur. J. Canc. 49 (2013), 219–230.
[13] Zlotnik, A., Burkhardt, A.M., Homey, B., Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol., 11, 2011, 597.
[14] DiPersio, J.F., Uy, G.L., Yasothan, U., Kirkpatrick, P., Plerixafor, Nat. Rev. Drug Discov., 8, 2009, 105.
[15] De Clercq, E., The bicyclam AMD3100 story. Nat. Rev. Drug Discov. 2 (2003), 581–587.
[16] De Clercq, E., The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol. 77 (2009), 1655–1664.
[17] Wu, C.H., Wang, C.J., Chang, C.P., Cheng, Y.C., Song, J.S., Jan, J.J., Chou, M.C., Ke, Y.Y., Ma, J., Wong, Y.C., Hsieh, T.C., Tien, Y.C., Gullen, E.A., Lo, C.F., Cheng, C.Y., Liu, Y.W., Sadani, A.A., Tsai, C.H., Hsieh, H.P., Tsou, L.K., Shia, K.S., Function-oriented development of CXCR4 antagonists as selective human immunodeficiency virus (HIV)-1 entry inhibitors. J. Med. Chem. 58 (2015), 1452–1465.
[18] Burger, J.A., Peled, A., CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23 (2009), 43–52.
[19] Tsou, L.K., Huang, Y.H., Song, J.S., Ke, Y.Y., Huang, J.K., Shia, K.S., Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med. Res. Rev. 38 (2018), 1188–1234.
[20] Wu, B., Chien, E.Y.T., Mol, C.D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F.C., Hamel, D.J., Kuhn, P., Handel, T.M., Cherezov, V., Stevens, R.C., Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330 (2010), 1066–1071.
[21] Qin, L., Kufareva, I., Holden, L.G., Wang, C., Zheng, Y., Zhao, C., Fenalti, G., Wu, H., Han, G.W., Cherezov, V., Abagyan, R., Stevens, R.C., Handel, T.M., Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347 (2015), 1117–1122.
[22] Xu, Y., Duggineni, S., Espitia, S., Richman, D.D., An, J., Huang, Z., A synthetic bivalent ligand of CXCR4 inhibits HIV infection. Biochem. Biophys. Res. Commun. 435 (2013), 646–650.
[23] Yang, Y., Gao, M., Zhang, Q., Zhang, C., Yang, X., Huang, Z., J. An, Design, synthesis, and biological characterization of novel PEG-linked dimeric modulators for CXCR4. Bioorg. Med. Chem. 24 (2016), 5393–5399.
[24] Zhang, C., Huang, L.S., Zhu, R., Meng, Q., Zhu, S., Xu, Y., Zhang, H., Fang, X., Zhang, X., Zhou, J., Schooley, R.T., Yang, X., Huang, Z., An, J., High affinity CXCR4 inhibitors generated by linking low affinity peptides. Eur. J. Med. Chem. 172 (2019), 174–185.
[25] Brelot, A., Heveker, N., Montes, M., Alizon, M., Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J. Biol. Chem. 275 (2000), 23736–23744.
[26] Zhou, N.M., Luo, Z.W., Luo, J.S., Liut, D.X., Hall, J.W., Pomerantz, R.J., Huang, Z.W., Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J. Biol. Chem. 276 (2001), 42826–42833.
[27] Tian, S.M., Choi, W.T., Liu, D.X., Pesavento, J., Wang, Y.L., An, J., Sodroski, J.G., Huang, Z.W., Distinct functional sites for human immunodeficiency virus type 1 and stromal cell-derived factor 1 alpha on CXCR4 transmembrane helical domains. J. Virol. 79 (2005), 12667–12673.
[28] Zachariassen, Z.G., Karlshoj, S., Haug, B.E., Rosenkilde, M.M., Vabeno, J., Probing the molecular interactions between CXC chemokine receptor 4 (CXCR4) and an arginine-based tripeptidomimetic antagonist (KRH-1636). J. Med. Chem. 58 (2015), 8141–8153.
[29] Choi, W.T., Kumar, S., Madani, N., Han, X., Tian, S., Dong, C.Z., Liu, D., Duggineni, S., Yuan, J., Sodroski, J.G., Huang, Z., An, J., A novel synthetic bivalent ligand to probe chemokine receptor CXCR4 dimerization and inhibit HIV-1 entry. Biochemistry 51 (2012), 7078–7086.
[30] Thiele, S., Mungalpara, J., Steen, A., Rosenkilde, M.M., Vabeno, J., Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis. Br. J. Pharmacol. 171 (2014), 5313–5329.
[31] Bridger, G.J., Skerlj, R.T., Thornton, D., Padmanabhan, S., Martellucci, S.A., Henson, G.W., Abrams, M.J., Yamamoto, N., De Vreese, K., Pauwels, R., et al. Synthesis and structure-activity relationships of phenylenebis(methylene)-linked bis-tetraazamacrocycles that inhibit HIV replication. Effects of macrocyclic ring size and substituents on the aromatic linker. J. Med. Chem. 38 (1995), 366–378.
[32] Bridger, G.J., Skerlj, R.T., Padmanabhan, S., Martellucci, S.A., Henson, G.W., Abrams, M.J., Joao, H.C., Witvrouw, M., De Vreese, K., Pauwels, R., De Clercq, E., Synthesis and structure-activity relationships of phenylenebis(methylene)-linked bis-tetraazamacrocycles that inhibit human immunodeficiency virus replication. 2. Effect of heteroaromatic linkers on the activity of bicyclams. J. Med. Chem. 39 (1996), 109–119.
[33] Zhan, W., Liang, Z., Zhu, A., Kurtkaya, S., Shim, H., Snyder, J.P., Liotta, D.C., Discovery of small molecule CXCR4 antagonists. J. Med. Chem. 50 (2007), 5655–5664.
[34] Pettersson, S., Perez-Nueno, V.I., Ros-Blanco, L., Puig de La Bellacasa, R., Rabal, M.O., Batllori, X., Clotet, B., Clotet-Codina, I., Armand-Ugon, M., Este, J., Borrell, J.I., Teixido, J., Discovery of novel non-cyclam polynitrogenated CXCR4 coreceptor inhibitors. ChemMedChem 3 (2008), 1549–1557.
[35] Zhu, A., Zhan, W., Liang, Z., Yoon, Y., Yang, H., Grossniklaus, H.E., Xu, J., Rojas, M., Lockwood, M., Snyder, J.P., Liotta, D.C., Shim, H., Dipyrimidine amines: a novel class of chemokine receptor type 4 antagonists with high specificity. J. Med. Chem. 53 (2010), 8556–8568.
[36] Ros-Blanco, L., Anido, J., Bosser, R., Este, J., Clotet, B., Kosoy, A., Ruiz-Avila, L., Teixido, J., Seoane, J., Borrell, J.I., Noncyclam tetraamines inhibit CXC chemokine receptor type 4 and target glioma-initiating cells. J. Med. Chem. 55 (2012), 7560–7570.
[37] Bai, R., Liang, Z., Yoon, Y., Liu, S., Gaines, T., Oum, Y., Shi, Q., Mooring, S.R., Shim, H., Symmetrical bis-tertiary amines as novel CXCR4 inhibitors. Eur. J. Med. Chem. 118 (2016), 340–350.
[38] Blanco, J., Barretina, J., Henson, G., Bridger, G., De Clercq, E., Clotet, B., Este, J.A., The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob. Agents Chemother. 44 (2000), 51–56.
[39] Peng, D., Cao, B., Zhou, Y.J., Long, Y.Q., The chemical diversity and structure-based evolution of non-peptide CXCR4 antagonists with diverse therapeutic potential. Eur. J. Med. Chem. 149 (2018), 148–169.
[40] Wong, R.S., Bodart, V., Metz, M., Labrecque, J., Bridger, G., Fricker, S.P., Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol. Pharmacol. 74 (2008), 1485–1495.
[41] Rosenkilde, M.M., Gerlach, L.O., Jakobsen, J.S., Skerlj, R.T., Bridger, G.J., Schwartz, T.W., Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J. Biol. Chem. 279 (2004), 3033–3041.
[42] Arimont, M., Sun, S.-L., Leurs, R., Smit, M., de Esch, I.J.P., de Graaf, C., Structural analysis of chemokine receptor–ligand interactions. J. Med. Chem. 60 (2017), 4735–4779.
[43] Endres, M.J., Clapham, P.R., Marsh, M., Ahuja, M., Turner, J.D., McKnight, A., Thomas, J.F., Stoebenau-Haggarty, B., Choe, S., Vance, P.J., Wells, T.N., Power, C.A., Sutterwala, S.S., Doms, R.W., Landau, N.R., Hoxie, J.A., CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87 (1996), 745–756.
[44] Brelot, A., Heveker, N., Pleskoff, O., Sol, N., Alizon, M., Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. J. Virol. 71 (1997), 4744–4751.
[45] Baribaud, F., Edwards, T.G., Sharron, M., Brelot, A., Heveker, N., Price, K., Mortari, F., Alizon, M., Tsang, M., Doms, R.W., Antigenically distinct conformations of CXCR4. J. Virol. 75 (2001), 8957–8967.
[46] Crump, M.P., Gong, J.H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J.L., Baggiolini, M., Sykes, B.D., Clark-Lewis, I., Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 16 (1997), 6996–7007.
[47] Gupta, S.K., Pillarisetti, K., Thomas, R.A., Aiyar, N., Pharmacological evidence for complex and multiple site interaction of CXCR4 with SDF-1alpha: implications for development of selective CXCR4 antagonists. Immunol. Lett. 78 (2001), 29–34.
[48] Wescott, M.P., Kufareva, I., Paes, C., Goodman, J.R., Thaker, Y., Puffer, B.A., Berdougo, E., Rucker, J.B., Handel, T.M., Doranz, B.J., Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 9928–9933.
[49] Wang, Y., Xie, Y., Oupicky, D., Potential of CXCR4/CXCL12 chemokine Axis in cancer drug delivery. Curr. Pharmacol. Rep. 2 (2016), 1–10.
[50] Kuil, J., Buckle, T., van Leeuwen, F.W., Imaging agents for the chemokine receptor 4 (CXCR4). Chem. Soc. Rev. 41 (2012), 5239–5261.
[51] Zhang, C., Zhang, H., Huang, L.S., Zhu, S., Xu, Y., Zhang, X.-Q., Schooley, R.T., Yang, X., Huang, Z., J. An, virtual screening, biological evaluation, and 3D-QSAR studies of new HIV-1 entry inhibitors that function via the CD4 primary receptor. Molecules, 23, 2018, 3036.
[52] Gervaix, A., West, D., Leoni, L.M., Richman, D.D., Wong-Staal, F., Corbeil, J., A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 4653–4658.
Citation statistics
Cited Times:8[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorXu, Y.; Huang, Z.
1.Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
2.Nobel Institute of Biomedicine, Zhuhai, 519080, China
3.Department of Medicine, University of California at San Diego, La Jolla, CA 92037, United States
4.School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
Corresponding Author AffilicationSchool of Medicine
Recommended Citation
GB/T 7714
Fang, X.,Meng, Q.,Zhang, al. Design, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists[J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY,2020.
APA Fang, X., Meng, Q., Zhang, H., Liang, B., Zhu, S., .. & Huang, Z. (2020). Design, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY.
MLA Fang, X.,et al."Design, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists".EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY (2020).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Fang, X.]'s Articles
[Meng, Q.]'s Articles
[Zhang, H.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Fang, X.]'s Articles
[Meng, Q.]'s Articles
[Zhang, H.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Fang, X.]'s Articles
[Meng, Q.]'s Articles
[Zhang, H.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.