Details of Research Outputs

TitleSRGC-Nets: Sparse Repeated Group Convolutional Neural Networks
Author (Name in English or Pinyin)
Yao Lu1; Guangming Lu1; Rui Lin1; Jinxing Li2,3; David Zhang4
Date Issued2019-09-09
Source PublicationIEEE Transactions on Neural Networks and Learning Systems
DOI10.1109/TNNLS.2019.2933665
Indexed ByEI
Funding Project国家自然科学基金项目
Firstlevel Discipline计算机科学技术
Education discipline科技类
Published range国外学术期刊
References
[1] P. V. S. Ponnapalli, K. C. Ho, and M. Thomson, "A formal selection and pruning algorithm for feedforward artificial neural network optimization," IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 964-968, Jul. 1999.
[2] A. P. Engelbrecht, "A new pruning heuristic based on variance analysis of sensitivity information," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1386-1399, Nov. 2001.
[3] P. Lauret, E. Fock, and T. A. Mara, "A node pruning algorithm based on a Fourier amplitude sensitivity test method," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 273-293, Mar. 2006.
[4] J. Wang, C. Xu, X. Yang, and J. M. Zurada, "A novel pruning algorithm for smoothing feedforward neural networks based on group lasso method," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 2012-2024, 2018.
[5] X. Dong, S. Chen, and S. Pan, "Learning to prune deep neural networks via layer-wise optimal brain surgeon," in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4860-4874.
[6] Y. He, X. Zhang, and J. Sun, "Channel pruning for accelerating very deep neural networks," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 1398-1406.
[7] J.-H. Luo, J. Wu, and W. Lin, "ThiNet: A filter level pruning method for deep neural network compression," in Proc. ICCV, Oct. 2017, pp. 5068-5076.
[8] T. Yang, Y. Chen, and V. Sze, "Designing energy-efficient convolutional neural networks using energy-aware pruning," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6071-6079. doi: 10.1109/CVPR.2017.643.
[9] Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu, "A novel channel pruning method for deep neural network compression," CoRR, May 2018. [Online]. Available: http://arxiv.org/abs/1805.11394
[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, "Binarized neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 4107-4115.
[11] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, "XNORNet: ImageNet classification using binary convolutional neural networks," in Computer Vision-ECCV, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer, 2016, pp. 525-542.
[12] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, "Quantized convolutional neural networks for mobile devices," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 4820-4828.
[13] X. Lin, C. Zhao, and W. Pan, "Towards accurate binary convolutional neural network," in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 344-352.
[14] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, "Incremental network quantization: Towards lossless CNNS with low-precision weights," CoRR, Feb. 2017. [Online]. Available: http://arxiv.org/abs/1702.03044
[15] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, "Ristretto: A framework for empirical study of resource-efficient inference in convolutional neural networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5784-5789, Nov. 2018.
[16] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 770-778.
[17] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, "Going deeper with convolutions," in Proc. Comput. Vis. Pattern Recognit., 2014, pp. 1-9.
[18] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learn., 2015, pp. 448-456.
[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.Wojna, "Rethinking the inception architecture for computer vision," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818-2826.
[20] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 2261-2269.
[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, vol. 25, no. 2, pp. 1097-1105.
[22] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated residual transformations for deep neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987-5995.
[23] A. G. Howard et al., "MobileNets: Efficient convolutional neural networks for mobile vision applications," CoRR, Apr. 2017. [Online]. Available: http://arxiv.org/abs/1704.04861
[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "MobileNetV2: Inverted residuals and linear bottlenecks," in Proc. CVPR, Jun. 2018, pp. 4510-4520.
[25] T. Zhang, G.-J. Qi, B. Xiao, and J. Wang, "Interleaved group convolutions," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 4383-4392.
[26] G. Xie, J. Wang, T. Zhang, J. Lai, R. Hong, and G.-J. Qi, "Interleaved structured sparse convolutional neural networks," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8847-8856.
[27] K. Sun, M. Li, D. Liu, and J. Wang, "IGCV3: Interleaved low-rank group convolutions for efficient deep neural networks," CoRR, Jun. 2018. [Online]. Available: https://arxiv.org/abs/1806.00178
[28] X. Zhang, X. Zhou, M. Lin, and J. Sun, "ShuffleNet: An extremely efficient convolutional neural network for mobile devices," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 6848-6856.
[29] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, "ShuffleNet V2: Practical guidelines for efficient CNN architecture design," in Computer Vision- ECCV, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. vol. 11218. Cham, Switzerland: Springer, 2018, pp. 122-138.
[30] Y. Chen, X. Jin, B. Kang, J. Feng, and S. Yan, "Sharing residual units through collective tensor factorization in deep neural networks," CoRR, Mar. 2017. [Online]. Available: http://arxiv.org/abs/1703.02180
[31] J.-T. Chien and Y.-T. Bao, "Tensor-factorized neural networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1998-2011, May 2018.
[32] J. Wu, D. Li, Y. Yang, C. Bajaj, and X. Ji, "Dynamic sampling convolutional neural networks," CoRR, Mar. 2018. [Online]. Available: http://arxiv.org/abs/1803.07624
[33] S. Zagoruyko and N. Komodakis, "Wide residual networks," in Proc. Brit. Mach. Vis. Conf. (BMVC), R. C. Wilson, E. R. Hancock, and W. A. P. Smith, Eds. Sep. 2016, pp. 87.1-87.12. doi: 10.5244/C.30.87.
[34] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images," Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech. Rep., Jan. 2009, vol. 1.
[35] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315-323.
[36] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 1251-1258.
[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248-255.
[38] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, "Deep networks with stochastic depth," in Proc. Eur. Conf. Comput. Vis. Amsterdam, The Netherlands: Springer, 2016, pp. 646-661.
[39] P. Chrabaszcz, I. Loshchilov, and F. Hutter, "A downsampled variant of ImageNet as an alternative to the CIFAR datasets," CoRR, Jul. 2017. [Online]. Available: http://arxiv.org/abs/1707.08819
[40] A. Torralba, R. Fergus, and W. T. Freeman, "80 million tiny images: A large data set for nonparametric object and scene recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
[41] G. Larsson, M. Maire, and G. Shakhnarovich, "FractalNet: Ultradeep neural networks without residuals," CoRR, May 2016. [Online]. Available: http://arxiv.org/abs/1605.07648
[42] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, "CINIC-10 is not ImageNet or CIFAR-10," CoRR, Aug. 2018. [Online]. Available: http://arxiv.org/abs/1810.03505
[43] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning," in Proc. Int. Conf. Mach. Learn., 2013, pp. 1139-1147.
[44] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger, "Snapshot ensembles: Train 1, get M for free," CoRR, Apr. 2017. [Online]. Available: http://arxiv.org/abs/1704.00109
[45] J. Wang, Z. Wei, T. Zhang, and W. Zeng, "Deeply-fused nets," CoRR, May 2016. [Online]. Available: http://arxiv.org/abs/1605.07716
[46] S. Singh, D. Hoiem, and D. Forsyth, "Swapout: Learning an ensemble of deep architectures," in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 28-36.
[47] L. Zhao, J. Wang, X. Li, Z. Tu, and W. Zeng, "On the connection of deep fusion to ensembling," CoRR, Nov. 2016. [Online]. Available: http://arxiv.org/abs/1611.07718
[48] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," in Proc. Eur. Conf. Comput. Vis. Amsterdam, The Netherlands: Springer, 2016, pp. 630-645.
[49] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi, "Deep roots: Improving CNN efficiency with hierarchical filter groups," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2017, pp. 1231-1240.
[50] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, "Compression of deep convolutional neural networks for fast and low power mobile applications," CoRR, Nov. 2015. [Online]. Available: http://arxiv.org/abs/1511.06530
Citation statistics
Cited Times:22[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1406
CollectionSchool of Data Science
Corresponding AuthorGuangming Lu
Affiliation
1.Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2.理工学院
3.College of Information Science and Technology, University of Science and Technology of China, Hefei 230052, China
4.数据科学学院
Recommended Citation
GB/T 7714
Yao Lu,Guangming Lu,Rui Linet al. SRGC-Nets: Sparse Repeated Group Convolutional Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2019.
APA Yao Lu, Guangming Lu, Rui Lin, Jinxing Li, & David Zhang. (2019). SRGC-Nets: Sparse Repeated Group Convolutional Neural Networks. IEEE Transactions on Neural Networks and Learning Systems.
MLA Yao Lu,et al."SRGC-Nets: Sparse Repeated Group Convolutional Neural Networks".IEEE Transactions on Neural Networks and Learning Systems (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Yao Lu]'s Articles
[Guangming Lu]'s Articles
[Rui Lin]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yao Lu]'s Articles
[Guangming Lu]'s Articles
[Rui Lin]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yao Lu]'s Articles
[Guangming Lu]'s Articles
[Rui Lin]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.