Details of Research Outputs

TitleA SPARSE COMPLETELY POSITIVE RELAXATION OF THE MODULARITY MAXIMIZATION FOR COMMUNITY DETECTION
Author (Name in English or Pinyin)
Zhang, Junyu1; Liu, Haoyang2; Wen, Zaiwen2; Zhang, Shuzhong1,3
Date Issued2018-09-25
Source PublicationSIAM JOURNAL ON SCIENTIFIC COMPUTING
ISSN1064-8275
DOI10.1137/17M1141904
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 40 期: 5 页: A3091-A3120
References
[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp., 10 (2008), 10008, https://doi.org/10.1088/1742-5468/2008/10/P10008.
[2] T. T. Cai, X. Li, et al, Robust and computationally feasible community detection in the presence of arbitrary outlier nodes, Ann. Statist., 43 (2015), pp. 1027-1059.
[3] K. Chaudhuri, F. C. Graham, and A. Tsiatas, Spectral clustering of graphs with general degrees in the extended planted partition model, JMLR Workshop Conf. Proc., 23 (2012), 35
[4] Y. Chen, X. Li, and J. Xu, Convexified modularity maximization for degree-corrected stochastic block models, Ann. Statist., 4 (2018), pp. 1573-1602.
[5] Y. Chen, S. Sanghavi, and H. Xu, Clustering sparse graphs, in Advances in Neural Information Processing Systems, Curran, Red Hook, NY, 2012, pp. 2204-2212.
[6] Y. Chen and J. Xu, Statistical-computational phase transitions in planted models: The high-dimensional setting., in ICML, Curran, Red Hook, NY, 2014, pp. 244-252.
[7] A. Coja-Oghlan and A. Lanka, Finding planted partitions in random graphs with general degree distributions, SIAM J. Discrete Math., 23 (2010), pp. 1682-1714.
[8] A. Dasgupta, J. E. Hopcroft, and F. McSherry, Spectral analysis of random graphs with skewed degree distributions, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, IEEE Computer Society, Los Alamitos, CA, 2004, pp. 602-610.
[9] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices (2011).
[10] C. Ding, X. He, and H. D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in Proceedings of the 2005 SIAM International Conference on Data Mining, SIAM, Philadelphia, 2005, pp. 606-610.
[11] C. Ding, T. Li, W. Peng, and H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, 2006, pp. 126-135.
[12] O. Guédon and R. Vershynin, Community detection in sparse networks via Grothendiecks inequality, Probab. Theory Related Fields, 165 (2016), pp. 1025-1049.
[13] L. Gulikers, M. Lelarge, and L. Massoulié, A spectral method for community detection in moderately-sparse degree-corrected stochastic block models, Adv. Appl. Probab., 49 (2017), pp. 686-721.
[14] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social Netw., 5 (1983), pp. 109-137.
[15] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2012.
[16] J. Jin, Fast community detection by score, Ann. Statist., 43 (2015), pp. 57-89.
[17] B. Karrer and M. E. Newman, Stochastic blockmodels and community structure in networks, Phys. Rev. E (3), 83 (2011), 016107.
[18] J. Kim and H. Park, Sparse Nonnegative Matrix Factorization for Clustering, Technical report, Georgia Institute of Technology, Atlanta, GA, 2008.
[19] D. Kuang, C. Ding, and H. Park, Symmetric nonnegative matrix factorization for graph clustering, in Proceedings of the 2012 SIAM International Conference on Data Mining, SIAM, Philadelphia, 2012, pp. 106-117.
[20] J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data (2014).
[21] F. McSherry, Spectral partitioning of random graphs, in Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 2001, IEEE, Computer Society, Los Alamitos, CA, 2001, pp. 529-537.
[22] M. E. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 8577-8582.
[23] M. E. Newman and G. Reinert, Estimating the number of communities in a network, Phys. Rev. Lett., 117 (2016), 078301.
[24] S. Oymak and B. Hassibi, Finding Dense Clusters Via "Low Rank+ Sparse" Decomposition, https://arxiv.org/abs/1104.5186 (2011).
[25] X. Pan, M. Lam, S. Tu, D. Papailiopoulos, C. Zhang, M. I. Jordan, K. Ramchandran, C. Re, and B. Recht, Cyclades: Conflict-free asynchronous machine learning, Advances in Neural Information Processing Systems, 2016, pp. 2568-2576.
[26] S. Paul and Y. Chen, Orthogonal Symmetric Non-negative Matrix Factorization Under the Stochastic Block Model, https://arxiv.org/abs/1605.05349 (2016).
[27] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, Overlapping community detection using Bayesian non-negative matrix factorization, Phys. Rev. E (3), 83 (2011), 066114.
[28] T. Qin and K. Rohe, Regularized spectral clustering under the degree-corrected stochastic blockmodel, in Advances in Neural Information Processing Systems, Curran, Red Hook, NY, 2013, pp. 3120-3128.
[29] B. Recht, C. Re, S. Wright, and F. Niu, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, in Advances in Neural Information Processing Systems, 2011, pp. 693-701.
[30] M. A. Riolo, G. T. Cantwell, G. Reinert, and M. Newman, Efficient method for estimating the number of communities in a network, Phys. Rev. E (3), 96 (2017), 032310.
[31] K. Rohe, S. Chatterjee, and B. Yu, Spectral clustering and the high-dimensional stochastic blockmodel, Ann. Statist., (2011), pp. 1878-1915.
[32] D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe, A consistent adjacency spectral embedding for stochastic blockmodel graphs, J. Amer. Statist. Assoc., 107 (2012), pp. 1119-1128.
[33] A. L. Traud, E. D. Kelsic, P. J. Mucha, and M. A. Porter, Comparing community structure to characteristics in online collegiate social networks, SIAM Rev., 53 (2011), pp. 526-543.
[34] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, Community discovery using nonnegative matrix factorization, Data Min. Knowl. Discov., 22 (2011), pp. 493-521.
[35] M. Wang, C. Wang, J. X. Yu, and J. Zhang, Community detection in social networks: An in-depth benchmarking study with a procedure-oriented framework, Proc. VLDB Endowment, 8 (2015), pp. 998-1009.
[36] Z. Yang, T. Hao, O. Dikmen, X. Chen, and E. Oja, Clustering by nonnegative matrix factorization using graph random walk, in Advances in Neural Information Processing Systems, Curran, Red Hook, NY, 2012, pp. 1079-1087.
[37] Y. Zhang, E. Levina, and J. Zhu, Detecting Overlapping Communities in Networks using Spectral Methods, https://arxiv.org/abs/1412.3432 (2014).
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/148
CollectionSchool of Data Science
Corresponding AuthorZhang, Junyu
Affiliation
1.Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA
2.Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
3.Chinese Univ Hong Kong , Inst Data & Decis Analyt, Shenzhen, Peoples R China
Recommended Citation
GB/T 7714
Zhang, Junyu,Liu, Haoyang,Wen, Zaiwenet al. A SPARSE COMPLETELY POSITIVE RELAXATION OF THE MODULARITY MAXIMIZATION FOR COMMUNITY DETECTION[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2018.
APA Zhang, Junyu, Liu, Haoyang, Wen, Zaiwen, & Zhang, Shuzhong. (2018). A SPARSE COMPLETELY POSITIVE RELAXATION OF THE MODULARITY MAXIMIZATION FOR COMMUNITY DETECTION. SIAM JOURNAL ON SCIENTIFIC COMPUTING.
MLA Zhang, Junyu,et al."A SPARSE COMPLETELY POSITIVE RELAXATION OF THE MODULARITY MAXIMIZATION FOR COMMUNITY DETECTION".SIAM JOURNAL ON SCIENTIFIC COMPUTING (2018).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Zhang, Junyu]'s Articles
[Liu, Haoyang]'s Articles
[Wen, Zaiwen]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhang, Junyu]'s Articles
[Liu, Haoyang]'s Articles
[Wen, Zaiwen]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhang, Junyu]'s Articles
[Liu, Haoyang]'s Articles
[Wen, Zaiwen]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.