Details of Research Outputs

TitleAddressing the batch effect issue for LC/MS metabolomics data in data preprocessing
Author (Name in English or Pinyin)
Liu, Qin1; Walker, Douglas2; Uppal, Karan3; Liu, Zihe1; Ma, Chunyu3; ViLinh Tran3; Li, Shuzhao4; Jones, Dean P.3; Yu, Tianwei5
Date Issued2020-08-17
Source PublicationScientific Reports
ISSN2045-2322
DOI10.1038/s41598-020-70850-0
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 10 期: 1
References
[1] Aberg, K. M., Torgrip, R. J., Kolmert, J., Schuppe-Koistinen, I. & Lindberg, J. Feature detection and alignment of hyphenated chromatographic-mass spectrometric data. Extraction of pure ion chromatograms using Kalman tracking. J. Chromatogr. A 1192, 139–146. 10.1016/j.chroma.2008.03.033 (2008). DOI: 10.1016/j.chroma.2008.03.033
[2] Chae, M., Shmookler Reis, R. J. & Thaden, J. J. An iterative block-shifting approach to retention time alignment that preserves the shape and area of gas chromatography-mass spectrometry peaks. BMC Bioinform. 9(Suppl 9), S15. 10.1186/1471-2105-9-S9-S15 (2008). DOI: 10.1186/1471-2105-9-S9-S15
[3] Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics (Oxford, England) 22, 634–636 (2006). DOI: 10.1093/bioinformatics/btk039
[4] Li, Z. et al. Nonlinear alignment of chromatograms by means of moving window fast Fourier transfrom cross-correlation. J. Sep. Sci. 36, 1677–1684. 10.1002/jssc.201201021 (2013). DOI: 10.1002/jssc.201201021
[5] Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006). DOI: 10.1021/ac051437y
[6] Stolt, R. et al. Second-order peak detection for multicomponent high-resolution LC/MS data. Anal. Chem. 78, 975–983. 10.1021/ac050980b (2006). DOI: 10.1021/ac050980b
[7] Takahashi, H., Morimoto, T., Ogasawara, N. & Kanaya, S. AMDORAP: Non-targeted metabolic profiling based on high-resolution LC–MS. BMC Bioinform. 12, 259. 10.1186/1471-2105-12-259 (2011). DOI: 10.1186/1471-2105-12-259
[8] Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504. 10.1186/1471-2105-9-504 (2008). DOI: 10.1186/1471-2105-9-504
[9] Trevino, V. et al. GridMass: A fast two-dimensional feature detection method for LC/MS. J. Mass Spectrom. 50, 165–174. 10.1002/jms.3512 (2015). DOI: 10.1002/jms.3512
[10] Uppal, K. et al. xMSanalyzer: Automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinform. 14, 15. 10.1186/1471-2105-14-15 (2013). DOI: 10.1186/1471-2105-14-15
[11] Yu, T., Park, Y., Johnson, J. M. & Jones, D. P. apLCMS–adaptive processing of high-resolution LC/MS data. Bioinformatics (Oxford, England) 25, 1930–1936. 10.1093/bioinformatics/btp291 (2009). DOI: 10.1093/bioinformatics/btp291
[12] Yu, T., Park, Y., Li, S. & Jones, D. P. Hybrid feature detection and information accumulation using high-resolution LC–MS metabolomics data. J. Proteome Res. 12, 1419–1427. 10.1021/pr301053d (2013). DOI: 10.1021/pr301053d
[13] Spicer, R., Salek, R. M., Moreno, P., Canueto, D. & Steinbeck, C. Navigating freely-available software tools for metabolomics analysis. Metabolomics 13, 106. 10.1007/s11306-017-1242-7 (2017). DOI: 10.1007/s11306-017-1242-7
[14] Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R. & Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289. 10.1021/ac202450g (2012). DOI: 10.1021/ac202450g
[15] Blazenovic, I., Kind, T., Ji, J. & Fiehn, O. Software tools and approaches for compound identification of LC–MS/MS data in metabolomics. Metabolites 10.3390/metabo8020031 (2018). DOI: 10.3390/metabo8020031
[16] Jaeger, C., Meret, M., Schmitt, C. A. & Lisec, J. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: Robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra. Rapid. Commun. Mass Spectrom. 31, 1261–1266. 10.1002/rcm.7905 (2017). DOI: 10.1002/rcm.7905
[17] Zhang, W. et al. MET-COFEA: A liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Anal. Chem. 86, 6245–6253. 10.1021/ac501162k (2014). DOI: 10.1021/ac501162k
[18] Uppal, K., Walker, D. I. & Jones, D. P. xMSannotator: An R package for network-based annotation of high-resolution metabolomics data. Anal. Chem. 89, 1063–1067. 10.1021/acs.analchem.6b01214 (2017). DOI: 10.1021/acs.analchem.6b01214
[19] Smith, C. A. et al. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005). DOI: 10.1097/01.ftd.0000179845.53213.39
[20] Wishart, D. S. et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603-610. 10.1093/nar/gkn810 (2009). DOI: 10.1093/nar/gkn810
[21] Cui, Q. et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164. 10.1038/nbt0208-162 (2008). DOI: 10.1038/nbt0208-162
[22] Brunius, C., Shi, L. & Landberg, R. Large-scale untargeted LC–MS metabolomics data correction using between-batch feature alignment and cluster-based within-batch signal intensity drift correction. Metabolomics 12, 173. 10.1007/s11306-016-1124-4 (2016). DOI: 10.1007/s11306-016-1124-4
[23] Luan, H., Ji, F., Chen, Y. & Cai, Z. statTarget: A streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Anal. Chim. Acta 1036, 66–72. 10.1016/j.aca.2018.08.002 (2018). DOI: 10.1016/j.aca.2018.08.002
[24] Kirwan, J. A., Broadhurst, D. I., Davidson, R. L. & Viant, M. R. Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Anal. Bioanal. Chem. 405, 5147–5157. 10.1007/s00216-013-6856-7 (2013). DOI: 10.1007/s00216-013-6856-7
[25] Kuligowski, J., Sanchez-Illana, A., Sanjuan-Herraez, D., Vento, M. & Quintas, G. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 140, 7810–7817. 10.1039/c5an01638j (2015). DOI: 10.1039/c5an01638j
[26] Sanchez-Illana, A. et al. Evaluation of batch effect elimination using quality control replicates in LC–MS metabolite profiling. Anal. Chim. Acta 1019, 38–48. 10.1016/j.aca.2018.02.053 (2018). DOI: 10.1016/j.aca.2018.02.053
[27] Fei, T. & Yu, T. scBatch: Batch-effect correction of RNA-seq data through sample distance matrix adjustment. Bioinformatics (Oxford, England) 36, 3115–3123. 10.1093/bioinformatics/btaa097 (2020). DOI: 10.1093/bioinformatics/btaa097
[28] Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127. 10.1093/biostatistics/kxj037 (2007). DOI: 10.1093/biostatistics/kxj037
[29] Deng, K. et al. WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis. Anal. Chim Acta 1061, 60–69. 10.1016/j.aca.2019.02.010 (2019). DOI: 10.1016/j.aca.2019.02.010
[30] Rong, Z. et al. NormAE: Deep adversarial learning model to remove batch effects in liquid chromatography mass spectrometry-based metabolomics data. Anal. Chem. 92, 5082–5090. 10.1021/acs.analchem.9b05460 (2020). DOI: 10.1021/acs.analchem.9b05460
[31] Salerno, S. Jr. et al. RRmix: A method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards. PLoS ONE 12, e0179530. 10.1371/journal.pone.0179530 (2017). DOI: 10.1371/journal.pone.0179530
[32] Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083. 10.1038/nprot.2011.335 (2011). DOI: 10.1038/nprot.2011.335
[33] Fan, S. et al. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal. Chem. 91, 3590–3596. 10.1021/acs.analchem.8b05592 (2019). DOI: 10.1021/acs.analchem.8b05592
[34] https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST000868.
[35] Sud, M. et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44, D463-470. 10.1093/nar/gkv1042 (2016). DOI: 10.1093/nar/gkv1042
[36] Tabassum, R. et al. A longitudinal study of health improvement in the Atlanta CHDWB Wellness Cohort. J. Pers. Med. 4, 489–507. 10.3390/jpm4040489 (2014). DOI: 10.3390/jpm4040489
[37] Libiseller, G. et al. IPO: A tool for automated optimization of XCMS parameters. BMC Bioinform. 16, 118. 10.1186/s12859-015-0562-8 (2015). DOI: 10.1186/s12859-015-0562-8
[38] Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
[39] Ho, J. E. et al. Metabolomic profiles of body mass index in the Framingham heart study reveal distinct Cardiometabolic phenotypes. PLoS ONE 11, e0148361. 10.1371/journal.pone.0148361 (2016). DOI: 10.1371/journal.pone.0148361
[40] Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123. 10.1371/journal.pcbi.1003123 (2013). DOI: 10.1371/journal.pcbi.1003123
[41] Manna, P. & Jain, S. K. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: Implications for obesity and diabetes. Cell Physiol. Biochem. 35, 1253–1275. 10.1159/000373949 (2015). DOI: 10.1159/000373949
Citation statistics
Cited Times:22[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1601
CollectionInstitute for Data and Decision Analytics
School of Data Science
Corresponding AuthorYu, Tianwei
Affiliation
1.Tongji Univ, Sch Software Engn, Shanghai 201804, Peoples R China
2.Icahn Sch Med Mt Sinai, Dept Environm Med & Publ Hlth, New York, NY 10029 USA
3.Emory Univ, Sch Med, Dept Med, Atlanta, GA 30322 USA
4.Jackson Lab, Farmington, CT 06032 USA
5.Chinese Univ Hong Kong Shenzhen , Sch Data Sci, Shenzhen 518172, Guangdong, Peoples R China
Corresponding Author AffilicationThe Chinese University of HongKong,Shenzhen
Recommended Citation
GB/T 7714
Liu, Qin,Walker, Douglas,Uppal, Karanet al. Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing[J]. Scientific Reports,2020.
APA Liu, Qin., Walker, Douglas., Uppal, Karan., Liu, Zihe., Ma, Chunyu., .. & Yu, Tianwei. (2020). Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Scientific Reports.
MLA Liu, Qin,et al."Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing".Scientific Reports (2020).
Files in This Item:
File Name/Size DocType File Type Version Access License
Addressing the batch(1828KB)Journal article--Published draftNo AccessCC BY-NC-SA
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Liu, Qin]'s Articles
[Walker, Douglas]'s Articles
[Uppal, Karan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Qin]'s Articles
[Walker, Douglas]'s Articles
[Uppal, Karan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Qin]'s Articles
[Walker, Douglas]'s Articles
[Uppal, Karan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.