Details of Research Outputs

TitleGeneralized Convolution Spectral Mixture for Multitask Gaussian Processes
Author (Name in English or Pinyin)
Chen, K.1; Van Laarhoven, T.2; Groot, P.2; Chen, J.3; Marchiori, E.2
Date Issued2020-12-01
Source PublicationIEEE Transactions on Neural Networks and Learning Systems
ISSN2162237X
DOI10.1109/TNNLS.2020.2980779
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 31 期: 12 页: 5613-5623
References
[1] C. E. Rasmussen and H. Nickisch, "Gaussian processes for machine learning (GPML) toolbox," J. Mach. Learn. Res., vol. 11, 3011-3015, Nov. 2010.
[2] C. E. Rasmussen, "Gaussian processes for machine learning," in Adaptive Computation and Machine Learning. Cambridge, MA, USA: MIT Press, 2006.
[3] E. V. Bonilla, K. M. Chai, and C.Williams, "Multi-task Gaussian process prediction," in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 153-160.
[4] Z. Xu and K. Kersting, "Multi-task learning with task relations," in Proc. IEEE 11th Int. Conf. Data Mining, Dec. 2011, pp. 884-893.
[5] H. Kang and S. Choi, "Bayesian multi-task learning for common spatial patterns," in Proc. Int. Workshop Pattern Recognit. NeuroImaging, May 2011, pp. 61-64.
[6] G. Leen, J. Peltonen, and S. Kaski, "Focused multi-task learning in a Gaussian process framework," Mach. Learn., vol. 89, nos. 1-2, pp. 157-182, Oct. 2012.
[7] R. Durichen, M. A. F. Pimentel, L. Clifton, A. Schweikard, and D. A. Clifton, "Multitask Gaussian processes for multivariate physiological time-series analysis," IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 314-322, Jan. 2015.
[8] W. Ruan, A. B. Milstein, W. Blackwell, and E. L. Miller, "Multiple output Gaussian process regression algorithm for multi-frequency scattered data interpolation," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 3992-3995.
[9] V. Trung Nguyen and V. Edwin Bonilla, "Collaborative multi-output Gaussian processes," in Proc. 13th Conf. Uncertainty Artif. Intell., N. L. Zhang and J. Tian, Eds. Quebec City, QC, Canada: AUAI Press, Jul. 2014, pp. 643-652.
[10] H. Wackernagel, "Multivariate geostatistics," Technometrics, vol. 38, no. 4, pp. 400-402, 1995.
[11] A. Melkumyan and F. Ramos, "Multi-kernel Gaussian processes," in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2011, vol. 22, no. 1, p. 1408.
[12] I. Bilionis and N. Zabaras, "Multi-output local Gaussian process regression: Applications to uncertainty quantification," J. Comput. Phys., vol. 231, no. 17, pp. 5718-5746, Jul. 2012.
[13] B. Zhang, B. A. Konomi, H. Sang, G. Karagiannis, and G. Lin, "Full scale multi-output Gaussian process emulator with nonseparable auto-covariance functions," J. Comput. Phys., vol. 300, pp. 623-642, Nov. 2015.
[14] T. C. Coburn, "Geostatistics for natural resources evaluation," Technometrics, vol. 42, no. 4, pp. 437-438, Nov. 2000.
[15] M. Alvarez and N. D. Lawrence, "Sparse convolved Gaussian processes for multi-output regression," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 57-64.
[16] M. A. Álvarez and N. D. Lawrence, "Computationally efficient convolved multiple output Gaussian processes," J. Mach. Learn. Res., vol. 12, pp. 1459-1500, May 2011.
[17] S. Gómez-González, M. A. Álvarez, H. F. Garciá, J. I. Ríos, and A. A. Orozco, "Discriminative training for convolved multiple-output Gaussian processes," in Proc. Iberoamer. Congr. Pattern Recognit. Montevideo, Uruguay: Springer, pp. 595-602 2015.
[18] C. Guarnizo and M. A. Álvarez, "Fast kernel approximations for latent force models and convolved multiple-output Gaussian processes," 2018, arXiv:1805.07460. [Online]. Available: http://arxiv.org/abs/1805.07460
[19] A. G. Wilson, "Covariance kernels for fast automatic pattern discovery and extrapolation with Gaussian processes," Ph.D. dissertation, Trinity College, Univ. Cambridge, Cambridge, U.K., 2014.
[20] A. Gordon Wilson, D. A. Knowles, and Z. Ghahramani, "Gaussian process regression networks," 2011, arXiv:1110.4411. [Online]. Available: http://arxiv.org/abs/1110.4411
[21] K. R. Ulrich, D. E. Carlson, K. Dzirasa, and L. Carin, "GP kernels for cross-spectrum analysis," in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 1999-2007.
[22] G. Parra and F. Tobar, "Spectral mixture kernels for multi-output Gaussian processes," in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6684-6693.
[23] K. Chen, T. van Laarhoven, P. Groot, J. Chen, and E. Marchiori, "Multioutput convolution spectral mixture for Gaussian processes," IEEE Trans. Neural Netw. Learn. Syst., early access, Dec. 17, 2019, doi: 10.1109/TNNLS.2019.2946082.
[24] J. A. Vargas-Guzmán, A. W. Warrick, and D. E. Myers, "Coregionalization by linear combination of nonorthogonal components," Math. Geol., vol. 34, no. 4, pp. 405-419, May 2002.
[25] K. Chen, T. V. Laarhoven, J. Chen, and E. Marchiori, "Incorporating dependencies in spectral kernels for Gaussian processes," in Proc. Mach. Learn. Knowl. Discovery Databases-Eur. Conf. (ECML-PKDD), Würzburg, Germany, 2019.
[26] M. A. Álvarez, L. Rosasco, and N. D. Lawrence, "Kernels for vectorvalued functions: A review," Found. Trends Mach. Learn., vol. 4, no. 3, pp. 195-266, 2012.
[27] K. Chen, P. Groot, J. Chen, and E. Marchiori, "Generalized spectral mixture kernels for multi-task Gaussian processes," 2018, arXiv:1808.01132. [Online]. Available: http://arxiv.org/abs/1808.01132
[28] K. Chen, P. Groot, J. Chen, and E. Marchiori, "Spectral mixture kernels with time and phase delay dependencies," 2018, arXiv:1808.00560. [Online]. Available: http://arxiv.org/abs/1808.00560
[29] D. Duvenaud, "Automatic model construction with Gaussian processes," Ph.D. dissertation, Pembroke College, Univ. Cambridge, Cambridge, U.K., 2014.
[30] A. Wilson and R. Adams, "Gaussian process kernels for pattern discovery and extrapolation," in Proc. 30th Int. Conf. Mach. Learn. (ICML), 2013, pp. 1067-1075.
[31] S. Bochner, Lectures on Fourier Integrals. (AM-42), vol. 42. Princeton, NJ, USA: Princeton Univ. Press, 2016.
[32] M. Stein, Interpolation of Spatial Data: Some Theory for Kriging. New York, NY, USA: Springer-Verlag, 1999.
[33] G. Gaspari and S. E. Cohn, "Construction of correlation functions in two and three dimensions," Quart. J. Roy. Meteorol. Soc., vol. 125, no. 554, pp. 723-757, Jan. 1999.
[34] A. Majumdar and A. E. Gelfand, "Multivariate spatial modeling for geostatistical data using convolved covariance functions," Math. Geol., vol. 39, no. 2, pp. 225-245, May 2007.
[35] M. G. Genton and W. Kleiber, "Cross-covariance functions for multivariate geostatistics," Stat. Sci., vol. 30, no. 2, pp. 147-163, May 2015.
[36] R. Yu, G. Li, and Y. Liu, "Tensor regression meets Gaussian processes," in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 84, A. J. Storkey and F. Pérez-Cruz, Eds. Canary Islands, Spain: PMLR, 2018, pp. 482-490.
[37] A. G. Wilson, E. Gilboa, A. Nehorai, and J. P. Cunningham, "Fast kernel learning for multidimensional pattern extrapolation," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3626-3634.
[38] D. Duvenaud, J. Robert Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani, "Structure discovery in nonparametric regression through compositional kernel search," 2013, arXiv:1302.4922. [Online]. Available: http://arxiv.org/abs/1302.4922
[39] S. Flaxman, A. Wilson, D. Neill, H. Nickisch, and A. Smola, "Fast Kronecker inference in Gaussian processes with non-Gaussian likelihoods," in Proc. Int. Conf. Mach. Learn., 2015, pp. 607-616.
[40] J. B. Oliva, A. Dubey, A. G. Wilson, B. Póczos, J. Schneider, and E. P. Xing, "Bayesian nonparametric kernel-learning," in Proc. 19th Int. Conf. Artif. Intell. Statist. (AISTATS). Cadiz, Spain: JMLR, 2016, pp. 1078-1086.
[41] P. A. Jang, A. Loeb, M. Davidow, and A. G. Wilson, "Scalable Levy process priors for spectral kernel learning," in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3943-3952.
[42] S. Remes, M. Heinonen, and S. Kaski, "A mutually-dependent Hadamard kernel for modelling latent variable couplings," in Proc. Asian Conf. Mach. Learn., 2017, pp. 455-470.
[43] M. Abadi et al., "TensorFlow: A system for large-scale machine learning," 2016, arXiv:1605.08695. [Online]. Available: http://arxiv.org/abs/1605.08695
[44] A. G. D. G. Matthews et al., "GPflow: A Gaussian process library using tensorflow," J. Mach. Learn. Res., vol. 18, no. 40, pp. 1-6, 2017.
[45] W. Herlands et al., "Scalable Gaussian processes for characterizing multidimensional change surfaces," in Proc. 19th Int. Conf. Artif. Intell. Statist. (AISTATS). Cadiz, Spain: JMLR, 2016, pp. 1013-1021.
[46] T. K. Moon, "The expectation-maximization algorithm," IEEE Signal Process. Mag., vol. 13, no. 6, pp. 47-60, Nov. 1996.
[47] K. Swersky, J. Snoek, and R. P. Adams, "Multi-task Bayesian optimization," in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 2004-2012.
[48] R. Martinez-Cantin, "BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits," J. Mach. Learn. Res., vol. 15, no. 1, pp. 3735-3739, 2014.
[49] N. Knudde, J. van der Herten, T. Dhaene, and I. Couckuyt, "GPflowOpt: A Bayesian optimization library using TensorFlow," 2017, arXiv:1711.03845. [Online]. Available: http://arxiv.org/abs/1711.03845
[50] Y. Wang and R. Khardon, "Sparse Gaussian processes for multi-task learning," in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases. Bristol, U.K.: Springer, pp. 711-727, 2012.
[51] J. Quiñonero-Candela and C. E. Rasmussen, "A unifying view of sparse approximate Gaussian process regression," J. Mach. Learn. Res., vol. 6, pp. 1939-1959, Dec. 2005.
[52] K. Chalupka, C. K. Williams, and I. Murray, "A framework for evaluating approximation methods for Gaussian process regression," J. Mach. Learn. Res., vol. 14, pp. 333-350, Feb. 2013.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1699
CollectionSchool of Science and Engineering
Future Network of Intelligence Institute
Corresponding AuthorChen, K.
Affiliation
1.School of Science and Engineering (SSE), Chinese University of Hong Kong, Shenzhen, 518172, Hong Kong
2.Institute for Computing and Information Sciences, Radboud University, Nijmegen, 6525 EC, Netherlands
3.Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
First Author AffilicationSchool of Science and Engineering
Corresponding Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Chen, K.,Van Laarhoven, T.,Groot, P.et al. Generalized Convolution Spectral Mixture for Multitask Gaussian Processes[J]. IEEE Transactions on Neural Networks and Learning Systems,2020.
APA Chen, K., Van Laarhoven, T., Groot, P., Chen, J., & Marchiori, E. (2020). Generalized Convolution Spectral Mixture for Multitask Gaussian Processes. IEEE Transactions on Neural Networks and Learning Systems.
MLA Chen, K.,et al."Generalized Convolution Spectral Mixture for Multitask Gaussian Processes".IEEE Transactions on Neural Networks and Learning Systems (2020).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Chen, K.]'s Articles
[Van Laarhoven, T.]'s Articles
[Groot, P.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Chen, K.]'s Articles
[Van Laarhoven, T.]'s Articles
[Groot, P.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chen, K.]'s Articles
[Van Laarhoven, T.]'s Articles
[Groot, P.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.