Details of Research Outputs

TitleA Research on Online Grammar Checker System Based on Neural Network Model
Author (Name in English or Pinyin)
Hao, S.1; Hao, G.2
Date Issued2020-11-25
Source PublicationJournal of Physics: Conference Series
Indexed BySCOPUS
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 1651 期: 1
[1] Awasthi A., Sarawagi S., Goyal R., Ghosh S. and Piratla V. 2019 Parallel iterative edit models for local sequence transduction arXiv preprint arXiv: 1910.02893
[2] Bahdanau D., Cho K. and Bengio Y. 2014 Neural machine translation by jointly learning to align and translate arXiv preprint arXiv: 1409.0473
[3] Bryant C. and Felice M. 2016 Issues in preprocessing current datasets for grammatical error correction (No. UCAM-CL-TR-894) (University of Cambridge, Computer Laboratory)
[4] Bryant C., Felice M., Andersen Ø. E. and Briscoe T. 2019 The BEA-2019 shared task on grammatical error correction Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications 52-75
[5] Bustamante F. R. and León F. S. 1996 GramCheck: A grammar and style checker arXiv preprint cmp-lg/9607001
[6] Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H. and Bengio Y. 2014 Learning phrase representations using RNN encoder-decoder for statistical machine translation arXiv preprint arXiv: 1406.1078
[7] Choe Y. J., Ham J., Park K. and Yoon Y. 2019 A neural grammatical error correction system built on better pre-training and sequential transfer learning arXiv preprint arXiv: 1907.01256
[8] Chollampatt S., Taghipour K. and Ng H. T. 2016 Neural network translation models for grammatical error correction arXiv preprint arXiv: 1606.00189
[9] Chollampatt S. and Ng H. T. 2018 A multilayer convolutional encoder-decoder neural network for grammatical error correction Thirty-Second AAAI Conference on Artificial Intelligence
[10] Dahlmeier D., Ng H. T. and Wu S. M. 2013 Building a large annotated corpus of learner English: The NUS corpus of learner English Proceedings of the eighth workshop on innovative use of NLP for building educational applications 22-31
[11] Dahlmeier D. and Ng H. T. 2012 Better evaluation for grammatical error correction Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 568-572
[12] Devlin J., Chang M. W., Lee K. and Toutanova K. 2018 Bert: Pre-training of deep bidirectional transformers for language understanding arXiv preprint arXiv: 1810.04805
[13] Gage P. 1994 A new algorithm for data compression C Users Journal 12 23-38
[14] Ghimire D. 2020 Comparative study on Python web frameworks: Flask and Django
[15] Goldberg Y. 2016 A primer on neural network models for natural language processing Journal of Artificial Intelligence Research 57 345-420
[16] Grundkiewicz R., Junczys-Dowmunt M. and Heafield K. 2019 Neural grammatical error correction systems with unsupervised pre-training on synthetic data Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications 252-263
[17] Honnibal M. and Montani I. 2017 spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing
[18] Junczys-Dowmunt M., Grundkiewicz R., Guha S. and Heafield K. 2018 Approaching neural grammatical error correction as a low-resource machine translation task arXiv preprint arXiv: 1804.05940
[19] Karyuatry L. 2018 Grammarly as a Tool to Improve Students' Writing Quality: Free Online-Proofreader across the Boundaries JSSH (Jurnal Sains Sosial dan Humaniora) 2 83-89
[20] Kudo T. and Richardson J. 2018 Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing arXiv preprint arXiv: 1808.06226
[21] Merity S., Xiong C., Bradbury J. and Socher R. 2016 Pointer sentinel mixture models arXiv preprint arXiv: 1609.07843
[22] Mikolov T., Chen K., Corrado G. and Dean J. 2013 Efficient estimation of word representations in vector space arXiv preprint arXiv: 1301.3781
[23] Mizumoto T., Hayashibe Y., Komachi M., Nagata M. and Matsumoto Y. 2012 The effect of learner corpus size in grammatical error correction of ESL writings Proceedings of COLING 2012: Posters 863-872
[24] Ng H. T., Wu S. M., Briscoe T., Hadiwinoto C., Susanto R. H. and Bryant C. 2014 The CoNLL-2014 shared task on grammatical error correction Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task 1-14
[25] Omelianchuk K., Atrasevych V., Chernodub A. and Skurzhanskyi O. 2020 GECToR-Grammatical Error Correction: Tag, Not Rewrite arXiv preprint arXiv: 2005.12592
[26] Ooms, J. (2018). hunspell: High-performance stemmer, tokenizer, and spell checker. Pobrane z
[27] Ott M., Edunov S., Baevski A., Fan A., Gross S., Ng N. and Auli M. 2019 fairseq: A fast, extensible toolkit for sequence modeling arXiv preprint arXiv: 1904.01038
[28] See A., Liu P. J. and Manning C. D. 2017 Get to the point: Summarization with pointer-generator networks arXiv preprint arXiv: 1704.04368
[29] Stutz M. 2004 The Linux Cookbook: Tips and Techniques for Everyday Use (No Starch Press)
[30] Tajiri T., Komachi M. and Matsumoto Y. 2012 Tense and aspect error correction for ESL learners using global context Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) 198-202
[31] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N. and Polosukhin I. 2017 Attention is all you need Advances in neural information processing systems 5998-6008
[32] Weischedel R., Palmer M., Marcus M., Hovy E., Pradhan S., Ramshaw L. and El-Bachouti M. 2013 Ontonotes release 5.0 ldc2013t19 (Philadelphia, PA: Linguistic Data Consortium) 23
[33] Xie Z., Avati A., Arivazhagan N., Jurafsky D. and Ng A. Y. 2016 Neural language correction with character-based attention arXiv preprint arXiv: 1603.09727
[34] Yuan Z. and Briscoe T. 2016 Grammatical error correction using neural machine translation Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 380-386
[35] Zhao W., Wang L., Shen K., Jia R. and Liu J. 2019 Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data arXiv preprint arXiv: 1903.00138
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorHao, G.
1.School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangzhou, 518172, China
2.School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
First Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Hao, S.,Hao, G. A Research on Online Grammar Checker System Based on Neural Network Model[J]. Journal of Physics: Conference Series,2020.
APA Hao, S., & Hao, G. (2020). A Research on Online Grammar Checker System Based on Neural Network Model. Journal of Physics: Conference Series.
MLA Hao, S.,et al."A Research on Online Grammar Checker System Based on Neural Network Model".Journal of Physics: Conference Series (2020).
Files in This Item:
File Name/Size DocType File Type Version Access License
A Research on Online(607KB)Journal article--Published draftRestricted AccessCC BY-NC-SA
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Hao, S.]'s Articles
[Hao, G.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Hao, S.]'s Articles
[Hao, G.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Hao, S.]'s Articles
[Hao, G.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.