Details of Research Outputs

TitleDeep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single Images
Author (Name in English or Pinyin)
Zhu, H.1,2; Cao, Y.1,3; Jin, H.1; Chen, W.4; Du, D.1,5; Wang, Z.2; Cui, S.1; Han, X.1
Date Issued2020-08-23
Source PublicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN03029743
DOI10.1007/978-3-030-58452-8_30
Indexed BySCOPUS
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 12346 LNCS 页: 512-530
References
[1] Agisoft: Mentashape (2019). https://www.agisoft.com/
[2] Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
[3] Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. In: International Conference on 3D Vision (3DV) (2018)
[4] Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
[5] Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2shape: Detailed full human body geometry from a single image. In: IEEE International Conference on Computer Vision (ICCV). IEEE (2019)
[6] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)
[7] Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3D people from images. In: IEEE International Conference on Computer Vision (ICCV). IEEE (2019)
[8] Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Piscataway (2014)
[9] Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)
[10] Bradley, D., Popa, T., Sheffer, A., Heidrich, W., Boubekeur, T.: Markerless garment capture. In: ACM Transactions on Graphics (TOG), vol. 27, p. 99. ACM (2008)
[11] Cagniart, C., Boyer, E., Ilic, S.: Probabilistic deformable surface tracking from multiple videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 326–339. Springer, Heidelberg (2010). https://doi.org/10. 1007/978-3-642-15561-1 24
[12] Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.P.: Free-viewpoint video of human actors. ACM Trans. Graph. (TOG) 22, 569–577 (2003)
[13] Chang, A.X., et al.: Shapenet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
[14] Chen, X., Guo, Y., Zhou, B., Zhao, Q.: Deformable model for estimating clothed and naked human shapes from a single image. Visual Comput. 29(11), 1187–1196 (2013)
[15] Chen, X., Zhou, B., Lu, F.X., Wang, L., Bi, L., Tan, P.: Garment modeling with a depth camera. ACM Trans. Graph. 34(6), 203–2111 (2015)
[16] Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D–r2n2: a unified approach for single and multi-view 3D object reconstruction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)
[17] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, vol. 2008, pp. 129–136. Salerno (2008)
[18] Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. (ToG) 34(4), 69 (2015)
[19] Daněřek, R., Dibra, E., Öztireli, C., Ziegler, R., Gross, M.: Deepgarment: 3D garment shape estimation from a single image. In: Computer Graphics Forum, vol. 36, pp. 269–280. Wiley Online Library (2017)
[20] De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video, vol. 27. ACM (2008)
[21] Dou, M., et al.: Fusion4d: real-time performance capture of challenging scenes. ACM Trans. Graph. (TOG) 35(4), 114 (2016)
[22] Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
[23] Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: Deepfashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5337–5345 (2019)
[24] Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché Approach to Learning 3D Surface Generation. In: Proceedings IEEE Conf.erenceon Computer Vision and Pattern Recognition (CVPR) (2018)
[25] Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: A two-stream network for fast and accurate 3D cloth draping. arXiv preprint arXiv:1811.10983 (2018)
[26] Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: A two-stream network for fast and accurate 3D cloth draping. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8739–8748 (2019)
[27] Habermann, M., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Livecap: real-time human performance capture from monocular video. ACM Trans. Graph. (TOG) 38(2), 14 (2019)
[28] Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model of human pose and body shape. In: Computer Graphics Forum, vol. 28, pp. 337–346. Wiley Online Library (2009)
[29] Hernández, C., Vogiatzis, G., Brostow, G.J., Stenger, B., Cipolla, R.: Non-rigid photometric stereo with colored lights. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
[30] Huang, Z., et al.: Deep volumetric video from very sparse multi-view performance capture. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 336–354 (2018)
[31] Huynh, L., et al.: Mesoscopic facial geometry inference using deep neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
[32] Izadi, S., et al.: Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on User interface Software and Technology, pp. 559–568. ACM (2011)
[33] Jin, N., Zhu, Y., Geng, Z., Fedkiw, R.: A pixel-based framework for data-driven clothing. arXiv preprint arXiv:1812.01677 (2018)
[34] Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8320–8329 (2018)
[35] Lahner, Z., Cremers, D., Tung, T.: Deepwrinkles: accurate and realistic clothing modeling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 667–684 (2018)
[36] Lazova, V., Insafutdinov, E., Pons-Moll, G.: 360-degree textures of people in clothing from a single image. In: International Conference on 3D Vision (3DV) (2019)
[37] Leroy, V., Franco, J.S., Boyer, E.: Multi-view dynamic shape refinement using local temporal integration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3094–3103 (2017)
[38] Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
[39] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248:1–248:16 (2015)
[40] Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)
[41] Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., Wang, R.: 3D shape reconstruction from sketches via multi-view convolutional networks. In: 2017 International Conference on 3D Vision (3DV), pp. 67–77. IEEE (2017)
[42] Matsuyama, T., Nobuhara, S., Takai, T., Tung, T.: 3D Video and its Applications. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4471-4120-4
[43] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)
[44] Miguel, E., et al.: Data-driven estimation of cloth simulation models. In: Computer Graphics Forum, vol. 31, pp. 519–528. Wiley Online Library (2012)
[45] Natsume, R., et al.: Siclope: silhouette-based clothed people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4480– 4490 (2019)
[46] Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)
[47] Pan, J., Han, X., Chen, W., Tang, J., Jia, K.: Deep mesh reconstruction from single RGB images via topology modification networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9964–9973 (2019)
[48] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
[49] Pons-Moll, G., Pujades, S., Hu, S., Black, M.: ClothCap: seamless 4D clothing capture and retargeting. ACM Trans. Graph. (SIGGRAPH) 36(4), 1–15 (2017)
[50] Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. (TOG) 34(4), 120 (2015)
[51] Pumarola, A., Sanchez, J., Choi, G., Sanfeliu, A., Moreno-Noguer, F.: 3DPeople: modeling the geometry of dressed humans. In: International Conference on Computer Vision (ICCV) (2019)
[52] Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. arXiv preprint arXiv:1905.05172 (2019)
[53] Scholz, V., Stich, T., Keckeisen, M., Wacker, M., Magnor, M.: Garment motion capture using color-coded patterns. In: Computer Graphics Forum, vol. 24, pp. 439–447. Wiley Online Library (2005)
[54] Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184. ACM (2004)
[55] Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Computer Graph. Appl. 27(3), 21–31 (2007)
[56] Tang, S., Tan, F., Cheng, K., Li, Z., Zhu, S., Tan, P.: A neural network for detailed human depth estimation from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7750–7759 (2019)
[57] Varol, G., et al.: Bodynet: volumetric inference of 3D human body shapes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)
[58] Vlasic, D., et al.: Dynamic shape capture using multi-view photometric stereo. In: ACM Transactions on Graphics (TOG), vol. 28, p. 174. ACM (2009)
[59] Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. In: ACM Transactions on Graphics (TOG), vol. 30, p. 71. ACM (2011)
[60] Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: ECCV (2018)
[61] Wang, T.Y., Ceylan, D., Popovic, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design. ACM Trans. Graph. 37(6), 1:1–1:14 (2018). https://doi.org/10.1145/3272127.3275074
[62] White, R., Crane, K., Forsyth, D.A.: Capturing and animating occluded cloth. In: ACM Transactions on Graphics (TOG), vol. 26, p. 34. ACM (2007)
[63] Xu, Y., Yang, S., Sun, W., Tan, L., Li, K., Zhou, H.: 3D virtual garment modeling from RGB images. arXiv preprint arXiv:1908.00114 (2019)
[64] Yu, T., et al.: Bodyfusion: real-time capture of human motion and surface geometry using a single depth camera. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 910–919 (2017)
[65] Yu, T., et al.: Doublefusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7287–7296 (2018)
[66] Yu, T., et al.: Simulcap: Single-view human performance capture with cloth simulation. arXiv preprint arXiv:1903.06323 (2019)
[67] Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4191–4200 (2017)
[68] Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: Deephuman: 3D human reconstruction from a single image. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
[69] Zhou, B., Chen, X., Fu, Q., Guo, K., Tan, P.: Garment modeling from a single image. In: Computer Graphics Forum, vol. 32, pp. 85–91. Wiley Online Library (2013)
[70] Zou, X., Kong, X., Wong, W., Wang, C., Liu, Y., Cao, Y.: Fashionai: a hierarchical dataset for fashion understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1748
CollectionShenzhen Research Institute of Big Data
School of Science and Engineering
Co-First AuthorCao, Y.; Jin, H.
Corresponding AuthorHan, X.
Affiliation
1.Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China
2.State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
3.Xidian University, Xi’an, China
4.Tencent America, Palo Alto, United States
5.University of Science and Technology of China, Hefei, China
First Author AffilicationShenzhen Research Institute of Big Data
Corresponding Author AffilicationShenzhen Research Institute of Big Data
Recommended Citation
GB/T 7714
Zhu, H.,Cao, Y.,Jin, H.et al. Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single Images[J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2020.
APA Zhu, H., Cao, Y., Jin, H., Chen, W., Du, D., .. & Han, X. (2020). Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single Images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
MLA Zhu, H.,et al."Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single Images".Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2020).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Zhu, H.]'s Articles
[Cao, Y.]'s Articles
[Jin, H.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhu, H.]'s Articles
[Cao, Y.]'s Articles
[Jin, H.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhu, H.]'s Articles
[Cao, Y.]'s Articles
[Jin, H.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.