Details of Research Outputs

TitleBimeron clusters in chiral antiferromagnets
Author (Name in English or Pinyin)
Li, X.1,2; Shen, L.1; Bai, Y.3,4; Wang, J.5,6; Zhang, X.1,6; Xia, J.1; Ezawa, M.7; Tretiakov, O.A.8,9; Xu, X.3,10; Mruczkiewicz, M.11,12; Krawczyk, M.13; Xu, Y.5,6; Evans, R.F.L.5; Chantrell, R.W.5; Zhou, Y.1
Date Issued2020-11-09
Source Publicationnpj Computational Materials
ISSN20573960
DOI10.1038/s41524-020-00435-y
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 6 期: 1
References
[1] Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable "vortices” in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989).
[2] Zhou, Y. Magnetic skyrmions: intriguing physics and new spintronic device concepts. Natl. Sci. Rev. 6, 210–212 (2019). DOI: 10.1093/nsr/nwy109
[3] Zhang, X. et al. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter 32, 143001 (2020). DOI: 10.1088/1361-648X/ab5488
[4] Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017). DOI: 10.1038/natrevmats.2017.31
[5] Kang, W., Huang, Y., Zhang, X., Zhou, Y. & Zhao, W. Skyrmion-electronics: an overview and outlook. Proc. IEEE 104, 2040–2061 (2016). DOI: 10.1109/JPROC.2016.2591578
[6] Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013). DOI: 10.1038/nnano.2013.243
[7] Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006). DOI: 10.1038/nature05056
[8] Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013). DOI: 10.1038/nnano.2013.210
[9] Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016). DOI: 10.1038/nmat4593
[10] Ma, C. et al. Electric field-induced creation and directional motion of domain walls and skyrmion bubbles. Nano Lett. 19, 353–361 (2018). DOI: 10.1021/acs.nanolett.8b03983
[11] Hu, J. M., Yang, T. & Chen, L. Q. Strain-mediated voltage-controlled switching of magnetic skyrmions in nanostructures. NPJ Comput. Mater. 4, 62 (2018). DOI: 10.1038/s41524-018-0119-2
[12] Kim, S. K. Dynamics of bimeron skyrmions in easy-plane magnets induced by a spin supercurrent. Phys. Rev. B 99, 224406 (2019). DOI: 10.1103/PhysRevB.99.224406
[13] Göbel, B., Mook, A., Henk, J., Mertig, I. & Tretiakov, O. A. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Rev. B 99, 060407(R) (2019). DOI: 10.1103/PhysRevB.99.060407
[14] Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018). DOI: 10.1038/s41586-018-0745-3
[15] Gao, N. et al. Creation and annihilation of topological meron pairs in in-plane magnetized films. Nat. Commun. 10, 5603 (2019). DOI: 10.1038/s41467-019-13642-z
[16] Kolesnikov, A. G. et al. Composite topological structure of domain walls in synthetic antiferromagnets. Sci. Rep. 8, 15794 (2018). DOI: 10.1038/s41598-018-33780-6
[17] Leonov, A. O. & Kézsmárki, I. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy. Phys. Rev. B 96, 014423 (2017). DOI: 10.1103/PhysRevB.96.014423
[18] Kharkov, Y. A., Sushkov, O. P. & Mostovoy, M. Bound states of skyrmions and merons near the Lifshitz point. Phys. Rev. Lett. 119, 207201 (2017). DOI: 10.1103/PhysRevLett.119.207201
[19] Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015). DOI: 10.1038/srep09400
[20] Lin, S.-Z., Saxena, A. & Batista, C. D. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys. Rev. B 91, 224407 (2015). DOI: 10.1103/PhysRevB.91.224407
[21] Ezawa, M. Compact merons and skyrmions in thin chiral magnetic films. Phys. Rev. B 83, 100408(R) (2011). DOI: 10.1103/PhysRevB.83.100408
[22] Murooka, R., Leonov, A. O., Inoue, K. & Ohe, J. Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions. Sci. Rep. 10, 396 (2020). DOI: 10.1038/s41598-019-56791-3
[23] Zarzuela, R., Bharadwaj, V. K., Kim, K.-W., Sinova, J. & Everschor-Sitte, K. Stability and dynamics of in-plane skyrmions in collinear ferromagnets. Phys. Rev. B 101, 054405 (2020). DOI: 10.1103/PhysRevB.101.054405
[24] Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018). DOI: 10.1021/acs.nanolett.8b03315
[25] Zhang, X. et al. Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition. Nat. Commun. 8, 1717 (2017). DOI: 10.1038/s41467-017-01785-w
[26] Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019). DOI: 10.1038/s41567-019-0476-x
[27] Duzgun, A., Selinger, J. V. & Saxena, A. Comparing skyrmions and merons in chiral liquid crystals and magnets. Phys. Rev. E 97, 062706 (2018). DOI: 10.1103/PhysRevE.97.062706
[28] Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). DOI: 10.1103/RevModPhys.90.015005
[29] Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018). DOI: 10.1038/s41567-018-0049-4
[30] Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). DOI: 10.1038/nnano.2016.18
[31] Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016). DOI: 10.1103/PhysRevLett.116.147203
[32] Dohi, T., DuttaGupta, S., Fukami, S. & Ohno, H. Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles. Nat. Commun. 10, 5153 (2019). DOI: 10.1038/s41467-019-13182-6
[33] Shen, L. et al. Current-induced dynamics and chaos of antiferromagnetic bimerons. Phys. Rev. Lett. 124, 037202 (2020). DOI: 10.1103/PhysRevLett.124.037202
[34] Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016). DOI: 10.1038/srep24795
[35] Shen, L. et al. Current-induced dynamics of the antiferromagnetic skyrmion and skyrmionium. Phys. Rev. Appl. 12, 064033 (2019). DOI: 10.1103/PhysRevApplied.12.064033
[36] Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2019). DOI: 10.1038/s41563-019-0468-3
[37] Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017). DOI: 10.1038/nphys4000
[38] Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017). DOI: 10.1038/nphys3883
[39] Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016). DOI: 10.1038/ncomms10293
[40] Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184422 (2013). DOI: 10.1103/PhysRevB.88.184422
[41] Tveten, E. G., Müller, T., Linder, J. & Brataas, A. Intrinsic magnetization of antiferromagnetic textures. Phys. Rev. B 93, 104408 (2016). DOI: 10.1103/PhysRevB.93.104408
[42] Salimath, A., Zhuo, F., Tomasello, R., Finocchio, G. & Manchon, A. Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime. Phys. Rev. B 101, 024429 (2020). DOI: 10.1103/PhysRevB.101.024429
[43] Pickart, S. J., Collins, M. F. & Windsor, C. G. Spin-wave dispersion in KMnF3. J. Appl. Phys. 37, 1054 (1966). DOI: 10.1063/1.1708332
[44] Jani, H. et al. Half-skyrmions and bimerons in an antiferromagnetic insulator at room temperature. Preprint at https://arxiv.org/abs/2006.12699
[45] Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973). DOI: 10.1103/PhysRevLett.30.230
[46] Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013). DOI: 10.1103/PhysRevLett.110.127208
[47] Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011). DOI: 10.1103/PhysRevLett.106.107206
[48] Velkov, H. et al. Phenomenology of current-induced skyrmion motion in antiferromagnets. New J. Phys. 18, 075016 (2016). DOI: 10.1088/1367-2630/18/7/075016
[49] Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016). DOI: 10.1103/PhysRevLett.117.087203
[50] Zhao, X. B. et al. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Proc. Natl. Acad. Sci. USA 113, 4918–4923 (2016). DOI: 10.1073/pnas.1600197113
[51] Yu, X. Z. et al. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nat. Phys. 14, 832–836 (2018). DOI: 10.1038/s41567-018-0155-3
[52] Göbel, B., Henk, J. & Mertig, I. Forming individual magnetic biskyrmions by merging two skyrmions in a centrosymmetric nanodisk. Sci. Rep. 9, 9521 (2019). DOI: 10.1038/s41598-019-45965-8
[53] Du, H. F. et al. Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys. Rev. Lett. 120, 197203 (2018). DOI: 10.1103/PhysRevLett.120.197203
[54] Rózsa, L. et al. Skyrmions with attractive interactions in an ultrathin magnetic film. Phys. Rev. Lett. 117, 157205 (2016). DOI: 10.1103/PhysRevLett.117.157205
[55] Bessarab, P. F. et al. Stability and lifetime of antiferromagnetic skyrmions. Phys. Rev. B 99, 140411(R) (2019). DOI: 10.1103/PhysRevB.99.140411
[56] Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014). DOI: 10.1063/1.4899186
[57] Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Mater 26, 103202 (2014). DOI: 10.1088/0953-8984/26/10/103202
[58] Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014). DOI: 10.1103/PhysRevLett.113.157201
Citation statistics
Cited Times:29[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1783
CollectionSchool of Science and Engineering
Co-First AuthorShen, L.; Bai, Y.
Corresponding AuthorZhou, Y.
Affiliation
1.School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
2.Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, University of Science and Technology of China, Hefei, 230026, China
3.Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
4.School of Physics and Electronic Information, Shanxi Normal University, Linfen, 041004, China
5.Department of Physics, University of York, York, YO10 5DD, United Kingdom
6.York-Nanjing International Center of Spintronics (YNICS), Nanjing University, Nanjing, 210093, China
7.Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan
8.School of Physics, The University of New South Wales, Sydney, 2052, Australia
9.National University of Science and Technology ‘MISiS’, Moscow, 119049, Russian Federation
10.School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China
11.Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 841 04, Slovakia
12.Centre for Advanced Materials Application CEMEA, Slovak Academy of Sciences, Dúbravská cesta 5807/9, Bratislava, 845 11, Slovakia
13.Faculty of Physics, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
First Author AffilicationSchool of Science and Engineering
Corresponding Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Li, X.,Shen, L.,Bai, Y.et al. Bimeron clusters in chiral antiferromagnets[J]. npj Computational Materials,2020.
APA Li, X., Shen, L., Bai, Y., Wang, J., Zhang, X., .. & Zhou, Y. (2020). Bimeron clusters in chiral antiferromagnets. npj Computational Materials.
MLA Li, X.,et al."Bimeron clusters in chiral antiferromagnets".npj Computational Materials (2020).
Files in This Item:
File Name/Size DocType File Type Version Access License
Bimeron clusters in (2647KB)Journal article--Published draftRestricted AccessCC BY-NC-SA
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Li, X.]'s Articles
[Shen, L.]'s Articles
[Bai, Y.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Li, X.]'s Articles
[Shen, L.]'s Articles
[Bai, Y.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Li, X.]'s Articles
[Shen, L.]'s Articles
[Bai, Y.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.