Details of Research Outputs

TitleDeformation of an encapsulated bubble in steady and oscillatory electric fields
Author (Name in English or Pinyin)
Liu, Yunqiao1; He, Dongdong2; Gong, Xiaobo1; Huang, Huaxiong3,4
Date Issued2018-04-06
Indexed BySCIE
Firstlevel Discipline自然科学相关工程与技术
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 844 页: 567-596
[1] BARTHÈS-BIESEL, D. & RALLISON, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251-267.
[2] BATCHELOR, G. K. 2000 An Introduction to Fluid Dynamics, chap. 3.1, Cambridge University Press.
[3] BRENNER, M. P., HILGENFELDT, S. & LOHSE, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425-484.
[4] CHANG, K. & OLBRICHT, W. L. 1993a Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 250, 609-633.
[5] CHANG, K. & OLBRICHT, W. L. 1993b Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 250, 587-608.
[6] CHATTERJEE, D. & SARKAR, K. 2003 A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med. Biol. 29 (12), 1749-1757.
[7] CHURCH, C. C. 1995 The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97 (3), 1510-1521.
[8] DE JONG, N., EMMER, M., VAN WAMEL, A. & VERSLUIS, M. 2009 Ultrasonic characterization of ultrasound contrast agents. Med. Biol. Engng Comput. 47 (8), 861-873.
[9] DE LOUBENS, C., DESCHAMPS, J., BOEDEC, G. & LEONETTI, M. 2015 Stretching of capsules in an elongation flow, a route to constitutive law. J. Fluid Mech. 767, R3.
[10] DE LOUBENS, C., DESCHAMPS, J., EDWARDS-LEVY, F. & LEONETTI, M. 2016 Tank-treading of microcapsules in shear flow. J. Fluid Mech. 789, 750-767.
[11] DONG, W., LI, R. Y., YU, H. L. & YAN, Y. Y. 2006 An investigation of behaviours of a single bubble in a uniform electric field. Exp. Therm. Fluid Sci. 30 (6), 579-586.
[12] DUBASH, N. & MESTEL, A. J. 2007 Behaviour of a conducting drop in a highly viscous fluid subject to an electric field. J. Fluid Mech. 581, 469-493.
[13] FENG, Z. C. & LEAL, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29 (1), 201-243.
[14] FERRARA, K., POLLARD, R. & BORDEN, M. 2007 Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Engng 9, 415-447.
[15] GRACIÀ, R. S., BEZLYEPKINA, N., KNORR, R. L., LIPOWSKY, R. & DIMOVA, R. 2010 Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matt. 6 (7), 1472-1482.
[16] GREEN, A. E. & ADKINS, J. E. 1960 Large Elastic Deformations and Non-Linear Continuum Mechanics. Clarendon Press.
[17] HELFRICH, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28 (11-12), 693-703.
[18] KANG, I. S. 1993 Dynamics of a conducting drop in a time-periodic electric field. J. Fluid Mech. 257, 229-264.
[19] KNOCHE, S., VELLA, D., AUMAITRE, E., DEGEN, P., REHAGE, H., CICUTA, P. & KIERFELD, J. 2013 Elastometry of deflated capsules: elastic moduli from shape and wrinkle analysis. Langmuir 29 (40), 12463-12471.
[20] KUMMROW, M. & HELFRICH, W. 1991 Deformation of giant lipid vesicles by electric fields. Phys. Rev. A 44 (12), 8356.
[21] KWAN, J. J. & BORDEN, M. A. 2012 Lipid monolayer collapse and microbubble stability. Adv. Colloid. Interface Sci. 183, 82-99.
[22] LACOUR, T., GUÉDRA, M., VALIER-BRASIER, T. & COULOUVRAT, F. 2018 A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell. J. Acoust. Soc. Am. 143 (1), 23-37.
[23] LAMB, H. 1932 Hydrodynamics. Cambridge University Press.
[24] LANDAU, L. D., LIFSHITZ, E. M. & PITAEVSKII, L. P. 1984 Electrodynamics of Continuous Media, 2nd edn. Elsevier Butterworth-Heinemann.
[25] LEE, S. M. & KANG, I. S. 1999 Three-dimensional analysis of the steady-state shape and smallamplitude oscillation of a bubble in uniform and non-uniform electric fields. J. Fluid Mech. 384, 59-91.
[26] LEFEBVRE, Y., LECLERC, E., BARTHÈS-BIESEL, D., WALTER, J. & EDWARDS-LÉVY, F. 2008 Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys. Fluids 20 (12), 123102.
[27] LINDNER, J. R. 2004 Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3 (6), 527-533.
[28] LIU, Y., SUGIYAMA, K. & TAKAGI, S. 2016 On the interaction of two encapsulated bubbles in an ultrasound field. J. Fluid Mech. 804, 58-89.
[29] LIU, Y., SUGIYAMA, K., TAKAGI, S. & MATSUMOTO, Y. 2011 Numerical study on the shape oscillation of an encapsulated microbubble in ultrasound field. Phys. Fluids 23 (4), 041904.
[30] LIU, Y., SUGIYAMA, K., TAKAGI, S. & MATSUMOTO, Y. 2012 Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave. J. Fluid Mech. 691, 315-340.
[31] LOVE, A. E. H. 1888 The small free vibrations and deformation of a thin elastic shell. Phil. Trans. R. Soc. Lond. A 179, 491-546.
[32] MARMOTTANT, P., VAN DER MEER, S., EMMER, M., VERSLUIS, M., DE JONG, N., HILGENFELDT, S. & LOHSE, D. 2005 A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118 (6), 3499-3505.
[33] VAN DER MEER, S. M., DOLLET, B., VOORMOLEN, M. M., CHIN, C. T., BOUAKAZ, A., DE JONG, N., VERSLUIS, M. & LOHSE, D. 2007 Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 121 (1), 648-656.
[34] MELCHER, J. R. & TAYLOR, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111-146.
[35] MOONEY, M. 1940 A theory of large elastic deformation. J. Appl. Phys. 11, 582-592.
[36] PEREIRA, A., TREVELYAN, P. M. J., THIELE, U. & KALLIADASIS, S. 2007 Dynamics of a horizontal thin liquid film in the presence of reactive surfactants. Phys. Fluids 19 (11), 112102.
[37] PLESSET, M. S. & PROSPERETTI, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1), 145-185.
[38] POZRIKIDIS, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269-291.
[39] PROSPERETTI, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34 (4), 339-352.
[40] PROSPERETTI, A. 1991 The thermal behaviour of oscillating gas bubbles. J. Fluid Mech. 222, 587-616.
[41] PU, G., BORDEN, M. A. & LONGO, M. L. 2006 Collapse and shedding transitions in binary lipid monolayers coating microbubbles. Langmuir 22 (7), 2993-2999.
[42] SALIPANTE, P. F. & VLAHOVSKA, P. M. 2014 Vesicle deformation in dc electric pulses. Soft Matt. 10 (19), 3386-3393.
[43] SAVILLE, D. A. 1997 Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 27-64.
[44] SCHNITZER, O. & YARIV, E. 2015 The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description. J. Fluid Mech. 773, 1-33.
[45] SCHWALBE, J. T., VLAHOVSKA, P. M. & MIKSIS, M. J. 2011 Vesicle electrohydrodynamics. Phys. Rev. E 83 (4), 046309.
[46] SEGERS, T., DE ROND, L., DE JONG, N., BORDEN, M. & VERSLUIS, M. 2016 Stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at high production rates. Langmuir 32 (16), 3937-3944.
[47] SHAW, S. J., SPELT, P. D. M. & MATAR, O. K. 2009 Electrically induced bubble deformation, translation and collapse. J. Engng Maths 65 (4), 291-310.
[48] SPELT, P. D. M. & MATAR, O. K. 2006 Collapse of a bubble in an electric field. Phys. Rev. E 74 (4), 046309.
[49] STONE, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111-112.
[50] STRIDE, E. & SAFFARI, N. 2003 On the destruction of microbubble ultrasound contrast agents. Ultrasound Med. Biol. 29 (4), 563-573.
[51] STRIDE, E. P. & COUSSIOS, C. C. 2010 Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Engng H 224 (2), 171-191.
[52] TAYLOR, G. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383-397.
[53] TRINH, E. H., HOLT, R. G. & THIESSEN, D. B. 1996 The dynamics of ultrasonically levitated drops in an electric field. Phys. Fluids 8 (1), 43-61.
[54] TSIGLIFIS, K. & PELEKASIS, N. A. 2008 Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law. J. Acoust. Soc. Am. 123 (6), 4059-4070.
[55] TSUKADA, T., KATAYAMA, T., ITO, Y. & HOZAWA, M. 1993 Theoretical and experimental studies of circulations inside and outside a deformed drop under a uniform electric field. J. Chem. Engng Jpn. 26 (6), 698-703.
[56] TU, J., GUAN, J., QIU, Y. & MATULA, T. J. 2009 Estimating the shell parameters of SonoVue® microbubbles using light scattering. J. Acoust. Soc. Am. 126 (6), 2954-2962.
[57] UNGER, E. C., HERSH, E., VANNAN, M., MATSUNAGA, T. O. & MCCREERY, T. 2001 Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44 (1), 45-54.
[58] UNNIKRISHNAN, S. & KLIBANOV, A. L. 2012 Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am. J. Roentgenol. 199 (2), 292-299.
[59] VAN VLIET, K. J., BAO, G. & SURESH, S. 2003 The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51 (19), 5881-5905.
[60] VIZIKA, O. & SAVILLE, D. A. 1992 The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239, 1-21.
[61] VLAHOVSKA, P. M., GRACIA, R. S., ARANDA-ESPINOZA, S. & DIMOVA, R. 2009 Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys. J. 96 (12), 4789-4803.
[62] YAMAMOTO, T., ARANDA-ESPINOZA, S., DIMOVA, R. & LIPOWSKY, R. 2010 Stability of spherical vesicles in electric fields. Langmuir 26 (14), 12390-12407.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorGong, Xiaobo
1.Shanghai Jiao Tong Univ, Key Lab Hydrodynam, Minist Educ, Dept Engn Mech, Shanghai 200240, Peoples R China
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
3.York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
4.Fields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
Recommended Citation
GB/T 7714
Liu, Yunqiao,He, Dongdong,Gong, Xiaoboet al. Deformation of an encapsulated bubble in steady and oscillatory electric fields[J]. JOURNAL OF FLUID MECHANICS,2018.
APA Liu, Yunqiao, He, Dongdong, Gong, Xiaobo, & Huang, Huaxiong. (2018). Deformation of an encapsulated bubble in steady and oscillatory electric fields. JOURNAL OF FLUID MECHANICS.
MLA Liu, Yunqiao,et al."Deformation of an encapsulated bubble in steady and oscillatory electric fields".JOURNAL OF FLUID MECHANICS (2018).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Liu, Yunqiao]'s Articles
[He, Dongdong]'s Articles
[Gong, Xiaobo]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Yunqiao]'s Articles
[He, Dongdong]'s Articles
[Gong, Xiaobo]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Yunqiao]'s Articles
[He, Dongdong]'s Articles
[Gong, Xiaobo]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.