Details of Research Outputs

TitleNumerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall
Author (Name in English or Pinyin)
Kwak, D.-B.1; Kim, S.C.1; Lee, H.2; Pui, D.Y.H.1,3
Date Issued2021
Source PublicationInternational Journal of Heat and Mass Transfer
ISSN00179310
DOI10.1016/j.ijheatmasstransfer.2020.120534
Firstlevel Discipline材料科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 164
References
[1] Modi, M., Kangude, P., Srivastava, A., Performance evaluation of alumina nanofluids and nanoparticles-deposited surface on nucleate pool boiling phenomena. Int. J. Heat Mass Transf., 146, 2020, 118833 https://doi.org/10.1016/j.ijheatmasstransfer.2019.118833.
[2] Peng, Q., Jia, L., Dang, C., Zhang, X., Huang, Q., Experimental investigation on flow condensation of R141b with CuO nanoparticles in a vertical circular tube. Appl. Therm. Eng. 129 (2018), 812–821 https://doi.org/10.1016/j.applthermaleng.2017.10.108.
[3] Watanabe, Y., Enoki, K., Okawa, T., Nanoparticle layer detachment and its influence on the heat transfer characteristics in saturated pool boiling of nanofluids. Int. J. Heat Mass Transf. 125 (2018), 171–178, 10.1016/j.ijheatmasstransfer.2018.04.072.
[4] Ma, M., Zou, C., Effect of nanoparticles on the mass transfer process of removal of hydrogen sulfide in biogas by MDEA. Int. J. Heat Mass Transf. 127 (2018), 385–392, 10.1016/j.ijheatmasstransfer.2018.06.091.
[5] Sheikholeslami, M., Shehzad, S.A., Li, Z., Shafee, A., Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int. J. Heat Mass Transf. 127 (2018), 614–622, 10.1016/j.ijheatmasstransfer.2018.07.013.
[6] Wang, Z., Cheng, P., Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials. Int. J. Heat Mass Transf. 140 (2019), 453–482 https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.085.
[7] Wang, Q., He, J., Shi, Y., Zhang, S., Niu, T., She, H., Bi, Y., Designing non-noble/semiconductor Bi/BiVO4photoelectrode for the enhanced photoelectrochemical performance. Chem. Eng. J. 326 (2017), 411–418, 10.1016/j.cej.2017.05.171.
[8] Saha, S., Samanta, P., Murmu, N.C., Banerjee, A., Ganesh, R.S., Inokawa, H., Kuila, T., Modified electrochemical charge storage properties of h-BN/rGO superlattice through the transition from n to p type semiconductor by fluorine doping. Chem. Eng. J. 339 (2018), 334–345, 10.1016/j.cej.2018.01.141.
[9] Jiang, H., Li, X., Li, M., Niu, P., Wang, T., Chen, D., Chen, P., Zou, J.P., A new strategy for triggering photocatalytic activity of cytrochrome P450 by coupling of semiconductors. Chem. Eng. J. 358 (2019), 58–66, 10.1016/j.cej.2018.09.199.
[10] Morales, A.M., Lieber, C.M., A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279 (1998), 208–211, 10.1126/science.279.5348.208.
[11] Lin, H.-F., Liao, S.-C., Hung, S.-W., The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photochem. Photobiol. A Chem. 174 (2005), 82–87 https://doi.org/10.1016/j.jphotochem.2005.02.015.
[12] Vollath, D., Plasma synthesis of nanopowders. J. Nanoparticle Res., 10, 2008, 39, 10.1007/s11051-008-9427-7.
[13] Saito, N., Hieda, J., Takai, O., Synthesis process of gold nanoparticles in solution plasma. Thin Solid Films 518 (2009), 912–917 https://doi.org/10.1016/j.tsf.2009.07.156.
[14] Rezaei, S., Manoucheri, I., Moradian, R., Pourabbas, B., One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chem. Eng. J. 252 (2014), 11–16, 10.1016/j.cej.2014.04.100.
[15] Choi, D.S., Robertson, A.W., Warner, J.H., Kim, S.O., Kim, H., Low‐temperature chemical vapor deposition synthesis of Pt–Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Adv. Mater. 28 (2016), 7115–7122, 10.1002/adma.201600469.
[16] Qin, X., Yokomori, T., Ju, Y., Flame synthesis and characterization of rare-earth (Er 3+, Ho 3+, and Tm 3+) doped upconversion nanophosphors. Appl. Phys. Lett., 90, 2007, 73104, 10.1063/1.2561079.
[17] Kammler, H.K., Mädler, L., Pratsinis, S.E., Flame synthesis of nanoparticles. Chem. Eng. Technol. 24 (2001), 583–596, 10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H.
[18] Strobel, R., Alfons, A., Pratsinis, S.E., Aerosol flame synthesis of catalysts. Adv. Powder Technol. 17 (2006), 457–480, 10.1163/156855206778440525.
[19] Streubel, R., Barcikowski, S., Gökce, B., Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt. Lett. 41 (2016), 1486–1489, 10.1364/OL.41.001486.
[20] Williams, W.C., Gas-based nanofluids (nanoaerosols). Heat Transf. Enhanc. with Nanofluids, 2015, CRC Press, 453–469.
[21] de Risi, A., Milanese, M., Laforgia, D., Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renew. Energy 58 (2013), 134–139 https://doi.org/10.1016/j.renene.2013.03.014.
[22] Potenza, M., Milanese, M., Colangelo, G., de Risi, A., Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Appl. Energy 203 (2017), 560–570 https://doi.org/10.1016/j.apenergy.2017.06.075.
[23] Srinivas Rao, S., Srivastava, A., Interferometry-based whole field investigation of heat transfer characteristics of dilute nanofluids. Int. J. Heat Mass Transf. 79 (2014), 166–175 https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.097.
[24] Rajput, N.S., Srivastava, A., Non-intrusive dynamic measurements of nanofluid-based heat transfer phenomena under thermally developing flow regime in the context of compact channels. Exp. Therm. Fluid Sci. 74 (2016), 271–285 https://doi.org/10.1016/j.expthermflusci.2015.12.018.
[25] Haridas, D., Rajput, N.S., Srivastava, A., Interferometric study of heat transfer characteristics of Al2O3 and SiO2-based dilute nanofluids under simultaneously developing flow regime in compact channels. Int. J. Heat Mass Transf. 88 (2015), 713–727 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.027.
[26] Hashimoto, S., Kurazono, K., Yamauchi, T., Anomalous enhancement of convective heat transfer with dispersed SiO2 particles in ethylene glycol/water nanofluid. Int. J. Heat Mass Transf., 150, 2020, 119302 https://doi.org/10.1016/j.ijheatmasstransfer.2019.119302.
[27] Cai, Y., Nan, Y., Guo, Z., Enhanced absorption of solar energy in a daylighting louver with Ni-water nanofluid. Int. J. Heat Mass Transf., 158, 2020, 119921 https://doi.org/10.1016/j.ijheatmasstransfer.2020.119921.
[28] Das, S.K., Choi, S.U.S., Patel, H.E., Heat transfer in nanofluids—a review. Heat Transf. Eng. 27 (2006), 3–19, 10.1080/01457630600904593.
[29] Wang, F.-L., Tang, S.-Z., He, Y.-L., Kulacki, F.A., Yu, Y., Heat transfer and fouling performance of finned tube heat exchangers: experimentation via on line monitoring. Fuel 236 (2019), 949–959 https://doi.org/10.1016/j.fuel.2018.09.081.
[30] Zhang, N., Wei, X., Yang, Q., Li, N., Yao, E., Numerical simulation and experimental study of the growth characteristics of particulate fouling on pipe heat transfer surface. Heat Mass Transf. 55 (2019), 687–698, 10.1007/s00231-018-2451-y.
[31] Sarafraz, M.M., Nikkhah, V., Nakhjavani, M., Arya, A., Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl. Therm. Eng. 123 (2017), 29–39 https://doi.org/10.1016/j.applthermaleng.2017.05.056.
[32] Oguntala, G.A., Abd-Alhameed, R.A., Sobamowo, G.M., Eya, N., Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component. Therm. Sci. Eng. Prog. 6 (2018), 177–185 https://doi.org/10.1016/j.tsep.2017.10.019.
[33] Kwak, D.-B., Noh, J.-H., Yook, S.-J., Natural convection flow around heated disk in cubical enclosure. J. Mech. Sci. Technol. 32 (2018), 2377–2384, 10.1007/s12206-018-0449-5.
[34] Lallart, A., Garnier, P., Lorenceau, E., Cartellier, A., Charlaix, E., Cleaning surfaces from nanoparticles with polymer film: impact of the polymer stripping. Micro Nano Eng. 1 (2018), 33–36 https://doi.org/10.1016/j.mne.2018.09.001.
[35] Hu, S.-C., Huang, Z.-Y., Fu, B.-R., Experimental study on the moisture removal of a 450-mm FOUP during the purge or vacuum process. Appl. Therm. Eng. 108 (2016), 951–957 https://doi.org/10.1016/j.applthermaleng.2016.07.059.
[36] Woo, S., Lee, J., Yook, S., Effect of a trap zone in reducing nanoparticle contamination of wafers and photomasks in parallel airflowp. IEEE Trans. Semicond. Manuf. 31 (2018), 87–96, 10.1109/TSM.2017.2759091.
[37] Cho, Y., Hong, S., Lee, S., Yang, J., Chae, S., Kim, T., Investigation of a standard particle deposition system on wafer surface and its application to wafer cleaning. ECS J. Solid State Sci. Technol. 8 (2019), 768–774, 10.1149/2.0081912jss.
[38] Kim, D., Mun, J., Kim, H., Yun, J.-Y., Kim, Y.-J., Kim, T., Kim, T., Kang, S.-W., Development of particle characteristics diagnosis system for nanoparticle analysis in vacuum. Rev. Sci. Instrum., 87, 2016, 23304, 10.1063/1.4942247.
[39] Sato, S., Chen, D.R., Pui, D.Y.H., Particle transport at low pressure: deposition in bends of a circular cross-section. Aerosol Sci. Technol. 37 (2003), 770–779, 10.1080/02786820300911.
[40] G, Z., Particle resuspension from surfaces: revisited and re-evaluated. Rev. Chem. Eng., 22, 2006, 1, 10.1515/REVCE.2006.22.1-2.1.
[41] Kim, C., Zuo, Z., Finger, H., Haep, S., Asbach, C., Fissan, H., Pui, D.Y.H., Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs). J. Nanoparticle Res., 17, 2015, 126 https://doi.org/10.1007/s11051-015-2936-2.
[42] Kim, C., Kang, S., Pui, D.Y.H., Removal of airborne sub-3nm particles using fibrous filters and granular activated carbons. Carbon N. Y. 104 (2016), 125–132, 10.1016/J.CARBON.2016.03.060.
[43] Gormley, P.G., Kennedy, M., Diffusion from a stream flowing through a cylindrical tube. Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 52 (1949), 163–169, 10.2307/20488498.
[44] Ingham, D.B., Diffusion of aerosols from a stream flowing through a short cylindrical pipe. J. Aerosol Sci. 15 (1984), 637–641.
[45] Ingham, D.B., Diffusion of aerosols in the entrance region of a smooth cylindrical pipe. J. Aerosol Sci. 22 (1991), 253–257.
[46] Martonen, T., Zhang, Z., Yang, Y., Particle diffusion with entrance effects in a smooth-walled cylinder. J. Aerosol Sci. 27 (1996), 139–150, 10.1016/0021-8502(95)00530-7.
[47] Pui, D.Y.H., Romay-Novas, F., Liu, B.Y.H., Experimental study of particle deposition in bends of circular cross section. Aerosol Sci. Technol. 7 (1987), 301–315, 10.1080/02786828708959166.
[48] Tsai, C.J., Pui, D.Y.H., Numerical study of particle deposition in bends of a circular cross-section-laminar flow regime. Aerosol Sci. Technol. 12 (1990), 813–831, 10.1080/02786829008959395.
[49] McFarland, A.R., Gong, H., Muyshondt, A., Wente, W.B., Anand, N.K., Aerosol deposition in bends with turbulent flow. Environ. Sci. Technol. 31 (1997), 3371–3377, 10.1021/es960975c.
[50] Peters, T.M., Leith, D., Measurement of particle deposition in industrial ducts. J. Aerosol Sci. 35 (2004), 529–540.
[51] Peters, T.M., Leith, D., Modeling large-particle deposition in bends of exhuast ventilation systems. Aerosol Sci. Technol. 38 (2004), 1171–1177, 10.1080/027868290896834.
[52] Sun, K., Lu, L., Jiang, H., A computational investigation of particle distribution and deposition in a 90° bend incorporating a particle-wall model. Build. Environ. 46 (2011), 1251–1262, 10.1016/j.buildenv.2010.12.006.
[53] Sun, K., Lu, L., Jiang, H., Jin, H., Experimental study of solid particle deposition in 90 ventilated bends of rectangular cross section with turbulent flow. Aerosol Sci. Technol. 47 (2013), 115–124, 10.1080/02786826.2012.731094.
[54] Sun, K., Lu, L., Particle flow behavior of distribution and deposition throughout 90° bends: analysis of influencing factors. J. Aerosol Sci. 65 (2013), 26–41, 10.1016/j.jaerosci.2013.07.002.
[55] Cong, X.C., Yang, G.S., Qu, J.H., Zhao, J.J., A model for evaluating the particle penetration efficiency in a ninety-degree bend with a circular-cross section in laminar and turbulent flow regions. Powder Technol. 305 (2017), 771–781, 10.1016/j.powtec.2016.10.074.
[56] Inthavong, K., A unifying correlation for laminar particle deposition in 90-degree pipe bends. Powder Technol. 345 (2019), 99–110 https://doi.org/10.1016/j.powtec.2018.12.095.
[57] Wang, J., Flagan, R.C., Seinfeld, J.H., Diffusional losses in particle sampling systems containing bends and elbows. J. Aerosol Sci. 33 (2002), 843–857, 10.1016/S0021-8502(02)00042-3.
[58] Ghaffarpasand, O., Drewnick, F., Hosseiniebalam, F., Gallavardin, S., Fachinger, J., Hassanzadeh, S., Borrmann, S., Penetration efficiency of nanometer-sized aerosol particles in tubes under turbulent flow conditions. J. Aerosol Sci. 50 (2012), 11–25, 10.1016/j.jaerosci.2012.03.002.
[59] Lin, J.Z., Yin, Z.Q., Lin, P.F., Yu, M.Z., Ku, X.K., Distribution and penetration efficiency of nanoparticles between 8 and 550nm in pipe bends under laminar and turbulent flow conditions. Int. J. Heat Mass Transf. 85 (2015), 61–70, 10.1016/j.ijheatmasstransfer.2015.01.033.
[60] Lee, K.W., Gieseke, J.A., Deposition of particles in turbulent pipe flows. J. Aerosol Sci. 25 (1994), 699–709 https://doi.org/10.1016/0021-8502(94)90011-6.
[61] Yook, S.J., Pui, D.Y.H., Experimental study of nanoparticle penetration efficiency through coils of circular cross-sections. Aerosol Sci. Technol. 40 (2006), 456–462, 10.1080/02786820600660895.
[62] Kwak, D.-B., Noh, J.H., Lee, K.S., Yook, S.J., Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles. Int. J. Therm. Sci. 120 (2017), 377–385, 10.1016/j.ijthermalsci.2017.06.022.
[63] Sparrow, E.M., Chrysler, G.M., Turbulent flow and heat transfer in bends of circular cross section: I—Heat transfer experiments. J. Heat Transf. 108 (1986), 40–47.
[64] Soh, W.Y., Berger, S.A., Laminar entrance flow in a curved pipe. J. Fluid Mech. 148 (1984), 109–135, 10.1017/S0022112084002275.
[65] Kwak, D.-B., Kim, S.C., Lee, H., Pui, D.Y.H., Experimental study of nanoparticle transport and penetration efficiency on a sharp-bent tube (elbow connection). Int. J. Heat Mass Transf., 155, 2020, 119816 https://doi.org/10.1016/j.ijheatmasstransfer.2020.119816.
[66] Zhang, P., Roberts, R.M., Bénard, A., Computational guidelines and an empirical model for particle deposition in curved pipes using an Eulerian-Lagrangian approach. J. Aerosol Sci. 53 (2012), 1–20, 10.1016/j.jaerosci.2012.05.007.
[67] Friedlander, S.K., Smoke, D., Haze: Fundamentals of Aerosol Dynamics. 2000, Oxford Univ. Press, New York.
[68] Lee, H., Yook, S.J., Han, S.Y., The effects of simultaneous electrophoresis and thermophoresis on particulate contamination of an inverted EUVL photomask surface in parallel airflow. Eur. Phys. J. Plus. 127 (2012), 1–12, 10.1140/epjp/i2012-12122-y.
[69] Kim, W.G., Lee, H., Yook, S.J., Lee, K.S., Particle deposition velocity onto EUVL masks in vertical airflow. IEEE Trans. Semicond. Manuf. 27 (2014), 417–421, 10.1109/TSM.2014.2337374.
[70] Kim, J.H., Fissan, H., Asbach, C., Yook, S.-.J., Pui, D.Y.H., Orvek, K.J., Investigation of thermophoretic protection with speed-controlled particles at 100, 50, and 25 mTorr. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 24 (2006), 1178–1184.
[71] Lee, M., Yook, S.J., Investigation of particulate contamination of heated wafers contained in a closed environment. J. Aerosol Sci. 88 (2015), 148–158, 10.1016/j.jaerosci.2015.06.005.
[72] Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2012, John Wiley & Sons.
[73] Einstein, A., On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Ann. Phys. 322 (1905), 549–560, 10.1002/andp.19053220806.
[74] ANSYS FLUENT theory guide, 2011.
[75] Kim, J.H., Mulholland, G.W., Kukuck, S.R., Pui, D.Y.H., Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol., 110, 2005, 31, 10.6028/jres.110.005.
[76] Li, A., Ahmadi, G., Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16 (1992), 209–226, 10.1080/02786829208959550.
[77] Prakash, A., Bapat, A.P., Zachariah, M.R., A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosol Sci. Technol. 37 (2003), 892–898, 10.1080/02786820300933.
[78] Yook, S.-J., Fissan, H., Asbach, C., Kim, J.H., Wang, J., Yan, P.-Y., Pui, D.Y.H., Evaluation of protection schemes for extreme ultraviolet lithography (EUVL) masks against top–down aerosol flow. J. Aerosol Sci. 38 (2007), 211–227.
[79] Taflin, D.C., Ward, T.L., Davis, E.J., Electrified droplet fission and the Rayleigh limit. Langmuir 5 (1989), 376–384.
[80] Gomez, A., Tang, K., Charge and fission of droplets in electrostatic sprays. Phys. Fluids 6 (1994), 404–414, 10.1063/1.868037.
[81] Lee, H., Chen, S.-C., Kim, C., Westenburg, E., Moon, S.I., Pui, D.Y.H., Evaluation of concentration measurement techniques of colloidal nanoparticles for microfiltration and ultrafiltration applications: inductively coupled plasma-mass spectrometry, nanoparticle tracking analysis and electrospray-scanning mobility particle si. Sep. Purif. Technol. 184 (2017), 34–42 https://doi.org/10.1016/j.seppur.2017.04.021.
[82] Lee, H., Kwak, D.-B., Kim, S.C., Pui, D.Y.H., Characterization of colloidal nanoparticles in mixtures with polydisperse and multimodal size distributions using a particle tracking analysis and electrospray-scanning mobility particle sizer. Powder Technol. 355 (2019), 18–25, 10.1016/j.powtec.2019.07.029.
[83] Lee, H., Kwak, D.-B., Kim, S.C., Ou, Q., Pui, D.Y.H., Influence of colloidal particles with bimodal size distributions on retention and pressure drop in ultrafiltration membranes. Sep. Purif. Technol. 222 (2019), 352–360, 10.1016/j.seppur.2019.04.054.
[84] Hogan, C.J., Kettleson, E.M., Ramaswami, B., Chen, D.-R., Biswas, P., Charge reduced electrospray size spectrometry of mega- and gigadalton complexes: whole viruses and virus fragments. Anal. Chem. 78 (2006), 844–852, 10.1021/ac051571i.
[85] Liu, B.Y.H., Pui, D.Y.H., Rubow, K.L., Szymanski, W.W., Electrostatic effects in aerosol sampling and filtration. Ann. Occup. Hyg. 29 (1985), 251–269, 10.1093/annhyg/29.2.251.
[86] Enayet, M.M., Gibson, M.M., Taylor, A.M.K.P., Yianneskis, M., Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. Int. J. Heat Fluid Flow 3 (1982), 213–219, 10.1016/0142-727X(82)90024-8.
[87] Takamura, H., Ebara, S., Hashizume, H., Aizawa, K., Yamano, H., Flow visualization and frequency characteristics of velocity fluctuations of complex turbulent flow in a short elbow piping under high reynolds number condition. J. Fluids Eng., 134, 2012, 101201, 10.1115/1.4007436.
[88] Yook, S.J., Ahn, K.H., Gaussian diffusion sphere model to predict mass transfer due to diffusional particle deposition on a flat surface in laminar flow regime. Appl. Phys. Lett., 94, 2009, 10.1063/1.3133343.
[89] Yook, S.J., Asbach, C., Ahn, K.H., Particle deposition velocity onto a face-up flat surface in a laminar parallel flow considering Brownian diffusion and gravitational settling. J. Aerosol Sci. 41 (2010), 911–920, 10.1016/j.jaerosci.2010.06.003.
[90] Lee, H., Jo, D.H., Kim, W.G., Yook, S.J., Ahn, K.H., Effect of an orifice on collection efficiency and wall loss of a slit virtual impactor. Aerosol Sci. Technol. 48 (2014), 121–127, 10.1080/02786826.2013.862333.
[91] Hedayati, F., Domairry, G., Nanoparticle migration effects on fully developed forced convection of TiO2–water nanofluid in a parallel plate microchannel. Particuology 24 (2016), 96–107 https://doi.org/10.1016/j.partic.2014.11.012.
[92] Waldmann, L., Schmitt, K.H., Thermophoresis and diffusiophoresis of aerosols. Aerosol Sci., 1966, Academic Press, New York.
[93] Warrier, P., Teja, A., Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res. Lett., 6, 2011, 247, 10.1186/1556-276X-6-247.
[94] Shi, H., Kleinstreuer, C., Zhang, Z., Kim, C.S., Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys. Fluids 16 (2004), 2199–2213, 10.1063/1.1724830.
Citation statistics
Cited Times:12[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1853
CollectionSchool of Science and Engineering
Corresponding AuthorLee, H.; Pui, D.Y.H.
Affiliation
1.Particle Technology Laboratory, Mechanical Engineering, University of Minnesota, 111 Church St., S.E., Minneapolis, MN 55455, United States
2.Department of Environmental Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
3.School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
Corresponding Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Kwak, D.-B.,Kim, S.C.,Lee, H.et al. Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall[J]. International Journal of Heat and Mass Transfer,2021.
APA Kwak, D.-B., Kim, S.C., Lee, H., & Pui, D.Y.H. (2021). Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall. International Journal of Heat and Mass Transfer.
MLA Kwak, D.-B.,et al."Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall".International Journal of Heat and Mass Transfer (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Kwak, D.-B.]'s Articles
[Kim, S.C.]'s Articles
[Lee, H.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Kwak, D.-B.]'s Articles
[Kim, S.C.]'s Articles
[Lee, H.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Kwak, D.-B.]'s Articles
[Kim, S.C.]'s Articles
[Lee, H.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.