Details of Research Outputs

TitleArtificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α-Fe 2 O 3 /g-C 3 N 4 Z-Scheme System for Efficient CO 2 Reduction into Solar Fuels
Author (Name in English or Pinyin)
Shen, Y.2; Han, Q.1; Hu, J.6; Gao, W.1; Wang, L.1; Yang, L.1; Gao, C.9; Shen, Q.7; Wu, C.1; Wang, X.1; Zhou, X.4,10; Zhou, Y.1,3,5,8; Zou, Z.1,2,3,5,8
Date Issued2020-07-27
Source PublicationACS Applied Energy Materials
Firstlevel Discipline材料科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 3 期: 7 页: 6561-6572
[1] Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2on TiO2and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408, 10.1002/anie.201207199
[2] Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70-81, 10.1038/nmat4778
[3] Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626, 10.1002/adma.201400087
[4] Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv. Funct. Mater. 2020, 30, 1906744, 10.1002/adfm.201906744
[5] Di, J.; Chen, C.; Yang, S.-Z.; Chen, S.; Duan, M.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z.; Chen, H.; Weng, Y.-X.; Xia, J.; Song, L.; Li, S.; Li, H.; Liu, Z. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840, 10.1038/s41467-019-10392-w
[6] Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?. Chem. Rev. 2016, 116, 7159-7329, 10.1021/acs.chemrev.6b00075
[7] Zada, A.; Ali, N.; Subhan, F.; Anwar, N.; Ali Shah, M. I.; Ateeq, M.; Hussain, Z.; Zaman, K.; Khan, M. Suitable energy platform significantly improves charge separation of g-C3N4for CO2reduction and pollutant oxidation under visible-light. Prog. Nat. Sci. 2019, 29, 138-144, 10.1016/j.pnsc.2019.03.004
[8] Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503, 10.1002/aenm.201701503
[9] Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.; Wang, X. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 2009, 131, 11658-11659, 10.1021/ja903923s
[10] Huang, H.; Xiao, K.; Tian, N.; Dong, F.; Zhang, T.; Du, X.; Zhang, Y. Template-free precursor-surface-etching route to porous, thin g-C3N4nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 2017, 5, 17452-17463, 10.1039/C7TA04639A
[11] Bai, X.; Zong, R.; Li, C.; Liu, D.; Liu, Y.; Zhu, Y. Enhancement of visible photocatalytic activity via Ag@C3N4core-shell plasmonic composite. Appl. Catal., B 2014, 147, 82-91, 10.1016/j.apcatb.2013.08.007
[12] Zada, A.; Qu, Y.; Ali, S.; Sun, N.; Lu, H.; Yan, R.; Zhang, X.; Jing, L. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path. J. Hazard. Mater. 2018, 342, 715-723, 10.1016/j.jhazmat.2017.09.005
[13] Wang, C.; Zhao, Y.; Xu, H.; Li, Y.; Wei, Y.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2with H2O. Appl. Catal., B 2020, 263, 118314, 10.1016/j.apcatb.2019.118314
[14] Wang, K.; Li, Y.; Li, J.; Zhang, G. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2generation. Appl. Catal., B 2020, 263, 117730, 10.1016/j.apcatb.2019.05.032
[15] Zhang, W.; Mohamed, A. R.; Ong, W.-J. Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now?. Angew. Chem., Int. Ed. 2020, 10.1002/anie.201914925
[16] Guo, H.; Chen, M.; Zhong, Q.; Wang, Y.; Ma, W.; Ding, J. Synthesis of Z-scheme α-Fe2O3/g-C3N4composite with enhanced visible-light photocatalytic reduction of CO2to CH3OH. J. CO2Util. 2019, 33, 233-241, 10.1016/j.jcou.2019.05.016
[17] Wang, J.; Zuo, X.; Cai, W.; Sun, J.; Ge, X.; Zhao, H. Facile fabrication of direct solid-state Z-scheme g-C3N4/Fe2O3heterojunction: a cost-effective photocatalyst with high efficiency for the degradation of aqueous organic pollutants. Dalton Trans. 2018, 47, 15382-15390, 10.1039/C8DT02893A
[18] Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing 2D/2D Fe2O3/g-C3N4Direct Z-Scheme Photocatalysts with Enhanced H2Generation Performance. Sol. RRL 2018, 2, 1800006, 10.1002/solr.201800006
[19] Zhao, C.; Wang, S.; Yan, Q.; Dong, P.; Wang, Y.; Liu, F.; Li, L. Nitrogen Defects-Rich 0D/2D α-Fe2O3/g-C3N4Z-Scheme Photocatalyst for Enhanced Photooxidation and H2Evolution Efficiencies. Nano 2018, 13, 1850086, 10.1142/S1793292018500868
[20] Kang, M. J.; Yu, H.; Lee, W.; Cha, H. G. Efficient Fe2O3/C-g-C3N4Z-scheme heterojunction photocatalyst prepared by facile one-step carbonizing process. J. Phys. Chem. Solids 2019, 130, 93-99, 10.1016/j.jpcs.2019.02.017
[21] Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. K. A hierarchical Z-scheme α-Fe2O3/g-C3N4hybrid for enhanced photocatalytic CO2reduction. Adv. Mater. 2018, 30, 1706108, 10.1002/adma.201706108
[22] She, X.; Wu, J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y.; Nie, K.; Liu, Y.; Yang, Y.; Rodrigues, M.-T. F.; Vajtai, R.; Lou, J.; Du, D.; Li, H.; Ajayan, P. M. High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4Z-scheme catalysts. Adv. Energy Mater. 2017, 7, 1700025, 10.1002/aenm.201700025
[23] Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603-2636, 10.1039/C5CS00838G
[24] Wang, D.; Li, D.; Guo, L.; Fu, F.; Zhang, Z.; Wei, Q. Template-free hydrothermal synthesis of novel three-dimensional dendritic CdS nanoarchitectures. J. Phys. Chem. C 2009, 113, 5984-5990, 10.1021/jp810155r
[25] Wang, C.; Yue, R.; Wang, H.; Zou, C.; Du, J.; Jiang, F.; Du, Y.; Yang, P.; Wang, C. Dendritic Ag@Pt core-shell catalyst modified with reduced graphene oxide and titanium dioxide: Fabrication, characterization, and its photo-electrocatalytic performance. Int. J. Hydrogen Energy 2014, 39, 5764-5771, 10.1016/j.ijhydene.2014.01.192
[26] Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
[27] Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169, 10.1103/PhysRevB.54.11169
[28] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953
[29] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868, 10.1103/PhysRevLett.77.3865
[30] Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 1505-1509, 10.1103/PhysRevB.57.1505
[31] Liao, P.; Carter, E. A. Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark. Phys. Chem. Chem. Phys. 2011, 13, 15189-15199, 10.1039/c1cp20829b
[32] Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799, 10.1002/jcc.20495
[33] Wang, J.; Qin, C.; Wang, H.; Chu, M.; Zada, A.; Zhang, X.; Li, J.; Raziq, F.; Qu, Y.; Jing, L. Exceptional photocatalytic activities for CO2conversion on Al-O bridged g-C3N4/α-Fe2O3z-scheme nanocomposites and mechanism insight with isotopesZ. Appl. Catal., B 2018, 221, 459-466, 10.1016/j.apcatb.2017.09.042
[34] Sivula, K.; Le Formal, F.; Gratzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432-449, 10.1002/cssc.201000416
[35] Kong, L.; Yan, J.; Li, P.; Liu, S. F. Fe2O3/C-C3N4-based tight heterojunction for boosting visible-light-driven photocatalytic water oxidation. ACS Sustainable. ACS Sustainable Chem. Eng. 2018, 6, 10436-10444, 10.1021/acssuschemeng.8b01799
[36] Hao, Q.; Mo, Z.; Chen, Z.; She, X.; Xu, Y.; Song, Y.; Ji, H.; Wu, X.; Yuan, S.; Xu, H.; Li, H. 0D/2D Fe2O3quantum dots/g-C3N4for enhanced visible-light-driven photocatalysis. Colloids Surf., A 2018, 541, 188-194, 10.1016/j.colsurfa.2018.01.023
[37] Luo, Y.; Luo, J.; Jiang, J.; Zhou, W.; Yang, H.; Qi, X.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M.; Yu, T. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559-6566, 10.1039/c2ee03396h
[38] Zhu, M.; Sun, Z.; Fujitsuka, M.; Majima, T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem., Int. Ed. 2018, 57, 2160-2164, 10.1002/anie.201711357
[39] Zhang, Z.; Huang, J.; Fang, Y.; Zhang, M.; Liu, K.; Dong, B. A Nonmetal plasmonic Z-scheme photocatalyst with UV-to NIR-driven photocatalytic protons reduction. Adv. Mater. 2017, 29, 1606688, 10.1002/adma.201606688
[40] Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2reduction activity. Appl. Catal., B 2018, 231, 368-380, 10.1016/j.apcatb.2018.03.036
[41] Xie, Z.; Feng, Y.; Wang, F.; Chen, D.; Zhang, Q.; Zeng, Y.; Lv, W.; Liu, G. Construction of carbon dots modified MoO3/g-C3N4Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl. Catal., B 2018, 229, 96-104, 10.1016/j.apcatb.2018.02.011
[42] Kumar, A.; Prajapati, P. K.; Pal, U.; Jain, S. L. Ternary rGO/InVO4/Fe2O3Z-scheme heterostructured photocatalyst for CO2reduction under visible light irradiation. ACS Sustainable Chem. Eng. 2018, 6, 8201-8211, 10.1021/acssuschemeng.7b04872
[43] Yang, Y.; Wu, J.; Xiao, T.; Tang, Z.; Shen, J.; Li, H.; Zhou, Y.; Zou, Z. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4hybrid as a Z-scheme photocatalyst for efficient and selective CO2reduction. Appl. Catal., B 2019, 255, 117771, 10.1016/j.apcatb.2019.117771
[44] Bhosale, R.; Jain, S.; Vinod, C. P.; Kumar, S.; Ogale, S. Direct Z-scheme g-C3N4/FeWO4banocomposite for enhanced and selective photocatalytic CO2reduction under visible light. ACS Appl. Mater. Interfaces 2019, 11, 6174-6183, 10.1021/acsami.8b22434
[45] Mo, Z.; Zhu, X.; Jiang, Z.; Song, Y.; Liu, D.; Li, H.; Yang, X.; She, Y.; Lei, Y.; Yuan, S.; Li, H.; Song, L.; Yan, Q.; Xu, H. Porous nitrogen-rich g-C3N4nanotubes for efficient photocatalytic CO2reduction. Appl. Catal., B 2019, 256, 117854, 10.1016/j.apcatb.2019.117854
[46] Xu, M.; Zada, A.; Yan, R.; Li, H.; Sun, N.; Qu, Y. Ti2O3/TiO2allotropic heterophase junction with enhanced charge separation and spatially separated active sites for photocatalytic CO2reduction. Phys. Chem. Chem. Phys. 2020, 22, 4526-4532, 10.1039/C9CP05147C
[47] Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Hierarchical hollow spheres composed of ultrathin Fe2O3nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 987, 10.1039/c2ee24148j
[48] Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Li, W.; Fu, H. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv. Mater. 2018, 30, 1804282, 10.1002/adma.201804282
[49] Li, H.; Gao, Y.; Zhou, Y.; Fan, F.; Han, Q.; Xu, Q.; Wang, X.; Xiao, M.; Li, C.; Zou, Z. Construction and nanoscale detection of interfacial charge transfer of elegant Z-Scheme WO3/Au/In2S3nanowire arrays. Nano Lett. 2016, 16, 5547-5552, 10.1021/acs.nanolett.6b02094
[50] Xu, J.; Li, X.; Liu, W.; Sun, Y.; Ju, Z.; Yao, T.; Wang, C.; Ju, H.; Zhu, J.; Wei, S.; Xie, Y. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121-9125, 10.1002/anie.201704928
[51] Oh, Y.; Le, V.-D.; Maiti, U. N.; Hwang, J. O.; Park, W. J.; Lim, J.; Lee, K. E.; Bae, Y.-S.; Kim, Y.-H.; Kim, S. O. Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 2015, 9, 9148-9157, 10.1021/acsnano.5b03400
[52] Han, Q.; Bai, X.; Man, Z.; He, H.; Li, L.; Hu, J.; Alsaedi, A.; Hayat, T.; Yu, Z.; Zhang, W.; Wang, J.; Zhou, Y.; Zou, Z. Convincing synthesis of atomically thin, single-crystalline InVO4sheets toward promoting highly selective and efficient solar conversion of CO2into CO. J. Am. Chem. Soc. 2019, 141, 4209-4213, 10.1021/jacs.8b13673
[53] Nakada, A.; Kuriki, R.; Sekizawa, K.; Nishioka, S.; Vequizo, J. J. M.; Uchiyama, T.; Kawakami, N.; Lu, D.; Yamakata, A.; Uchimoto, Y.; Ishitani, O.; Maeda, K. Effects of interfacial electron transfer in metal complex-semiconductor hybrid photocatalysts on Z-scheme CO2reduction under visible light. ACS Catal. 2018, 8, 9744-9754, 10.1021/acscatal.8b03062
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorZhou, X.; Zhou, Y.
1.National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
2.College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
3.Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
4.College of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, China
5.Kunshan Sunlaite New Energy Co. Ltd, Kunshan Innovation Institute of Nanjing University, Kunshan, Jiangsu, 215347, China
6.Institute of Advanced Materials, Jiangxi Normal University, Nanchang, 330022, China
7.Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, 182-8585, Japan
8.School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, Hong Kong
9.School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
10.College of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, China
Corresponding Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Shen, Y.,Han, Q.,Hu, al. Artificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α-Fe 2 O 3 /g-C 3 N 4 Z-Scheme System for Efficient CO 2 Reduction into Solar Fuels[J]. ACS Applied Energy Materials,2020.
APA Shen, Y., Han, Q., Hu, J., Gao, W., Wang, L., .. & Zou, Z. (2020). Artificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α-Fe 2 O 3 /g-C 3 N 4 Z-Scheme System for Efficient CO 2 Reduction into Solar Fuels. ACS Applied Energy Materials.
MLA Shen, Y.,et al."Artificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α-Fe 2 O 3 /g-C 3 N 4 Z-Scheme System for Efficient CO 2 Reduction into Solar Fuels".ACS Applied Energy Materials (2020).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Shen, Y.]'s Articles
[Han, Q.]'s Articles
[Hu, J.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Shen, Y.]'s Articles
[Han, Q.]'s Articles
[Hu, J.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Shen, Y.]'s Articles
[Han, Q.]'s Articles
[Hu, J.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.