Details of Research Outputs

TitleDecrease of an intracellular organic osmolyte contributes to the cytotoxicity of organophosphate in neuroblastoma cells in vitro
Author (Name in English or Pinyin)
Wang, P.1,2; Wu, Y.-J.1; Sun, M.-L.1
Date Issued2021-04-15
Source PublicationToxicology
ISSN0300483X
DOI10.1016/j.tox.2021.152725
Firstlevel Discipline生物学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 453
References
[1] Abou-Donia, M.B., Organophosphorus ester-induced chronic neurotoxicity. Arch. Environ. Health 58:8 (2003), 484–497.
[2] Akassoglou, K., Malester, B., Xu, J., Tessarollo, L., Rosenbluth, J., Chao, M.V., Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 5075–5080.
[3] Aldridge, W.N., Tricresyl phosphates and cholinesterase. Biochem. J. 56:2 (1954), 185–189.
[4] Baker, P.E., Cole, T.B., Cartwright, M., Suzuki, S.M., Thummel, K.E., Lin, Y.S., Co, A.L., Rettie, A.E., Kim, J.H., Furlong, C.E., Identifying safer anti-wear triaryl phosphate additives for jet engine lubricants. Chem. Biol. Interact. 203:1 (2013), 257–264.
[5] Brown, W.D., Osmotic demyelination disorders: central pontine and extrapontine myelinolysis. Curr. Opin. Neurol. 13:6 (2000), 691–697.
[6] Burg, M.B., Ferraris, J.D., Dmitrieva, N.I., Cellular response to hyperosmotic stresses. Physiol. Rev. 87:4 (2007), 1441–1474.
[7] Chang, P.A., Wu, Y.J., Effect of tri-o-cresyl phosphate on cytoskeleton in human neuroblastoma SK-N-SH cell. Mol. Cell. Biochem. 290 (2006), 145–151.
[8] Chen, J.X., Sun, Y.J., Wang, P., Long, D.X., Li, W., Li, L., Wu, Y.J., Induction of autophagy by TOCP in differentiated human neuroblastoma cells lead to degradation of cytoskeletal components and inhibition of neurite outgrowth. Toxicology 310 (2013), 92–97.
[9] Craig, P.H., Barth, M.L., Evaluation of the hazards of industrial exposure to tricresyl phosphate: a review and interpretation of the literature. J. Toxicol. Environ. Health B Crit. Rev. 2 (1999), 281–300.
[10] Farina, M., Aschner, M., Rocha, J.B., Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256:3 (2011), 405–417.
[11] Fernandes, L.S., Emerick, G.L., dos Santos, N.A., de Paula, E.S., Barbosa, F. Jr, dos Santos, A.C., In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate. Toxicol. In Vitro 29 (2015), 522–528.
[12] Gallazzini, M., Ferraris, J.D., Kunin, M., Morris, R.G., Burg, M.B., Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 15260–15265.
[13] Gallazzini, M., Ferraris, J.D., Burg, M.B., GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC. Proc. Natl. Acad. Sci. U. S. A. 105:31 (2008), 11026–11031.
[14] Gankam-Kengne, F., Couturier, B.S., Soupart, A., Brion, J.P., Decaux, G., Osmotic stress-induced defective glial proteostasis contributes to brain demyelination after hyponatremia treatment. J. Am. Soc. Nephrol. 28:6 (2017), 1802–1813.
[15] Garcia-Perez, A., Burg, M.B., Renal medullary organic osmolytes. Physiol. Rev. 71 (1991), 1081–1115.
[16] Glynn, P., A mechanism for organophosphate-induced delayed neuropathy. Toxicol. Lett. 162 (2006), 94–97.
[17] Heacock, A.M., Dodd, M.S., Fisher, S.K., Regulation of volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following activation of lysophospholipid receptors. J. Pharmacol. Exp. Ther. 317:2 (2006), 685–693.
[18] Hufnagel, R.B., Arno, G., Hein, N.D., Hersheson, J., Prasad, M., Anderson, Y., Krueger, L.A., Gregory, L.C., Stoetzel, C., Jaworek, T.J., Hull, S., Li, A., Plagnol, V., Willen, C.M., Morgan, T.M., Prows, C.A., Hegde, R.S., Riazuddin, S., Grabowski, G.A., Richardson, R.J., Dieterich, K., Huang, T., Revesz, T., Martinez-Barbera, J.P., Sisk, R.A., Jefferies, C., Houlden, H., Dattani, M.T., Fink, J.K., Dollfus, H., Moore, A.T., Ahmed, Z.M., Neuropathy target esterase impairments cause oliver-McFarlane and laurence-moon syndromes. J. Med. Genet. 52:2 (2015), 85–94.
[19] Jo, A.O., Ryskamp, D.A., Phuong, T.T., Verkman, A.S., Yarishkin, O., MacAulay, N., Križaj, D., TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal müller glia. J. Neurosci. 35:39 (2015), 13525–13537.
[20] Johnson, M.K., The delayed neurotoxic action of some organophosphorus compounds. Identification of the phosphorylation site as an esterase. Biochem. J. 114 (1969), 711–717.
[21] Johnson, M.K., The target for initiation of delayed neurotoxicity by organophosphorus esters: biochemical studies and toxicological applications. Rev. Biochem. Toxicol. 4 (1982), 141–212.
[22] Kültz, D., Hyperosmolality triggers oxidative damage in kidney cells. Proc. Natl. Acad. Sci. U. S. A. 101:25 (2004), 9177–9178.
[23] Kumar, V., Gill, K.D., Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41 (2014), 154–166.
[24] Kwon, E.D., Jung, K.Y., Edsall, L.C., Kim, H.Y., Garcia-Perez, A., Burg, M.B., Osmotic regulation of synthesis of glycerophosphocholine from phosphatidylcholine in MDCK cells. Am. J. Physiol. 268 (1995), C402–C412.
[25] Liu, X., Xu, L., Shen, J., Wang, J., Ruan, W., Yu, M., Chen, J., Involvement of oxidative stress in tri-ortho-cresyl phosphate-induced autophagy of mouse leydig TM3 cells in vitro. Reprod. Biol. Endocrinol., 14(1), 2016, 30.
[26] Long, D.X., Wu, Y.J., Growth inhibition and induction of G(1) phase cell cycle arrest in neuroblastoma SH-SY5Y cell by tri-ortho-cresyl phosphate. Toxicol. Lett. 181:1 (2008), 47–52.
[27] Long, D.X., Hu, D., Wang, P., Wu, Y.J., Induction of autophagy in human neuroblastoma SH-SY5Y cells by tri-ortho-cresyl phosphate. Mol. Cell. Biochem. 396:1-2 (2014), 33–40.
[28] Morgan, J.P., Tulloss, T.C., The jake walk blues: a toxicologic tragedy mirrored in American popular music. Ann. Intern. Med. 85 (1976), 804–808.
[29] Nanda, S., Tapaswi, P.K., Biochemical, neuropathological and behavioral studies in hens induced by acute exposure of tri-ortho-cresyl phosphate. Int. J. Neurosci. 82 (1995), 243–254.
[30] Nunes, P., Ernandez, T., Roth, I., Qiao, X., Strebel, D., Bouley, R., Charollais, A., Ramadori, P., Foti, M., Meda, P., Féraille, E., Brown, D., Hasler, U., Hypertonic stress promotes autophagy and microtubule-dependent autophagosomal clusters. Autophagy 9:4 (2013), 550–567.
[31] Quistad, G.B., Winrow, C.J., Sparks, S.E., Casida, J.E., Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 7983–7987.
[32] Rainier, S., Bui, M., Mark, E., Thomas, D., Tokarz, D., Ming, L., Delaney, C., Richardson, R.J., Albers, J.W., Matsunami, N., Stevens, J., Coon, H., Leppert, M., Fink, J.K., Neuropathy target esterase gene mutations cause motor neuron disease. Am. J. Hum. Genet. 82 (2008), 780–785.
[33] Song, F., Kou, R., Zou, C., Gao, Y., Zeng, T., Xie, K., Involvement of autophagy in tri-ortho-cresyl phosphate-induced delayed neuropathy in hens. Neurochem. Int. 64 (2014), 1–8.
[34] Wang, P., Wen, Y., Han, G.Z., Sidhu, P.K., Zhu, B.T., Characterization of the oestrogenic activity of non-aromatic steroids: are there male-specific endogenous oestrogen receptor modulators?. Br. J. Pharmacol. 158 (2009), 1796–1807.
[35] Wiegand, T.J., Adulterated cocaine and lessons learned from the jake walk blues. J. Med. Toxicol. 6 (2010), 63–66.
[36] Winder, C., Balouet, J.C., The toxicity of commercial jet oils. Environ. Res. 89 (2002), 146–164.
[37] Xu, H.Y., Wang, P., Sun, Y.J., Jiang, L., Xu, M.Y., Wu, Y.J., Autophagy in tri-o-cresyl phosphate-induced delayed neurotoxicity. J. Neuropathol. Exp. Neurol. 76:1 (2017), 52–60.
[38] Yang, T., Zhang, A., Honeggar, M., Kohan, D.E., Mizel, D., Sanders, K., Hoidal, J.R., Briggs, J.P., Schnermann, J.B., Hypertonic induction of COX-2 in collecting duct cells by reactive oxygen species of mitochondrial origin. J. Biol. Chem. 280 (2005), 34966–34973.
[39] Zablocki, K., Miller, S.P., Garcia-Perez, A., Burg, M.B., Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC: choline phosphodiesterase. Proc. Natl. Acad. Sci. U. S. A. 88 (1991), 7820–7824 and correction 1991;88(21):9907.
[40] Zaccheo, O., Dinsdale, D., Meacock, P.A., Glynn, P., Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J. Biol. Chem. 279 (2004), 24024–24033.
[41] Zhang, Z., Dmitrieva, N.I., Park, J.H., Levine, R.L., Burg, M.B., High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 9491–9496.
[42] Zhang, L.P., Wang, Q.S., Guo, X., Zhu, Y.J., Zhou, G.Z., Xie, K.Q., Time-dependent changes of lipid peroxidation and antioxidative status in nerve tissues of hens treated with tri-ortho-cresyl phosphate (TOCP). Toxicology 239:1-2 (2007), 45–52.
[43] Zhou, X., Ferraris, J.D., Cai, Q., Agarwal, A., Burg, M.B., Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP. Am. J. Physiol. Renal Physiol. 289 (2005), F377–F385.
[44] Zhu, L., Wang, P., Sun, Y.J., Xu, M.Y., Wu, Y.J., Disturbed phospholipid homeostasis in endoplasmic reticulum initiates tri-o-cresyl phosphate-induced delayed neurotoxicity. Sci. Rep., 6, 2016, 37574.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/1979
CollectionSchool of Medicine
Corresponding AuthorWu, Y.-J.
Affiliation
1.Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
2.School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
First Author AffilicationSchool of Medicine
Recommended Citation
GB/T 7714
Wang, P.,Wu, Y.-J.,Sun, M.-L. Decrease of an intracellular organic osmolyte contributes to the cytotoxicity of organophosphate in neuroblastoma cells in vitro[J]. Toxicology,2021.
APA Wang, P., Wu, Y.-J., & Sun, M.-L. (2021). Decrease of an intracellular organic osmolyte contributes to the cytotoxicity of organophosphate in neuroblastoma cells in vitro. Toxicology.
MLA Wang, P.,et al."Decrease of an intracellular organic osmolyte contributes to the cytotoxicity of organophosphate in neuroblastoma cells in vitro".Toxicology (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Wang, P.]'s Articles
[Wu, Y.-J.]'s Articles
[Sun, M.-L.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wang, P.]'s Articles
[Wu, Y.-J.]'s Articles
[Sun, M.-L.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang, P.]'s Articles
[Wu, Y.-J.]'s Articles
[Sun, M.-L.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.