Details of Research Outputs

TitleTrends in application of advancing computational approaches in GPCR ligand discovery
Author (Name in English or Pinyin)
Zhu, S.1,2; Wu, M.1; Huang, Z.1,2,3; An, J.1
Date Issued2021
Source PublicationExperimental Biology and Medicine
ISSN15353702
DOI10.1177/1535370221993422
Firstlevel Discipline生物学
Education discipline科技类
Published range国外学术期刊
References
[1] Munk C, Mutt E, Isberg V, Nikolajsen LF, Bibbe JM, Flock T, Hanson MA, Stevens RC, Deupi X, Gloriam DE., An online resource for GPCR structure determination and analysis. Nat Methods 2019;16:151–62
[2] Pierce KL, Premont RT, Lefkowitz RJ., Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002;3:639–50
[3] Congreve M, de Graaf C, Swain NA, Tate CG., Impact of GPCR structures on drug discovery. Cell 2020;181:81–91
[4] Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SPH, Buneman OP, Davenport AP, McGrath JC, Peters JA, Spedding M, Catterall WA, Fabbro D, Davies JA., Nc-Iuphar. The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 2016;44:D1054–D68
[5] Roth BL, Kroeze WK., Integrated approaches for genome-wide interrogation of the druggable non-olfactory G protein-coupled receptor superfamily. J Biol Chem 2015;290:19471–7
[6] Sriram K, Insel PA., G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 2018;93:251–8
[7] Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE., Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017;16:829–42
[8] Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP., A comprehensive map of molecular drug targets. Nat Rev Drug Discov 2017;16:19–34
[9] Doze VA, Perez DM., G-protein-coupled receptors in adult neurogenesis. Pharmacol Rev 2012;64:645–75
[10] Wu F, Song G, de Graaf C, Stevens RC., Structure and function of peptide-binding G protein-coupled receptors. J Mol Biol 2017;429:2726–45
[11] Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC., High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007;318:1258–65
[12] Caffrey M, Li D, Dukkipati A., Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 2012;51:6266–88
[13] Munk C, Isberg V, Mordalski S, Harpsoe K, Rataj K, Hauser AS, Kolb P, Bojarski AJ, Vriend G, Gloriam DE., GPCRdb: the G protein-coupled receptor database – an introduction. Br J Pharmacol 2016;173:2195–207
[14] Kowalsman N, Niv MY., GPCR & company: databases and servers for GPCRs and interacting partners. Adv Exp Med Biol 2014;796:185–204
[15] Zhao Q, Wu BL., Ice breaking in GPCR structural biology. Acta Pharmacol Sin 2012;33:324–34
[16] Rouck JE, Krapf JE, Roy J, Huff HC, Das A., Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017;591:2057–88
[17] Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN, Furness SGB, Venugopal H, Baltos JA, Plitzko JM, Danev R, Baumeister W, May LT, Wootten D, Sexton PM, Glukhova A, Christopoulos A., Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature 2018;558:559–63
[18] Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK., Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 2019;364:552–7
[19] Garcia-Nafria J, Nehme R, Edwards PC, Tate CG., Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric go. Nature 2018;558:620–3
[20] Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, Skiniotis G., Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol Cell 2019;75:781–90.e3
[21] Garcia-Nafria J, Lee Y, Bai X, Carpenter B, Tate CG., Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife 2018;7:e35946
[22] Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR, Hilger D, Dawson R, Matile H, Schertler GFX, Granier S, Weis WI, Dror RO, Manglik A, Skiniotis G, Kobilka BK., Structure of the micro-opioid receptor-Gi protein complex. Nature 2018;558:547–52
[23] Hauser AS, Gloriam DE, Brauner-Osborne H, Foster SR., Novel approaches leading towards peptide GPCR de-orphanisation. Br J Pharmacol 2020;177:961–8
[24] Granier S, Kobilka B., A new era of GPCR structural and chemical biology. Nat Chem Biol 2012;8:670–3
[25] Thorsen TS, Matt R, Weis WI, Kobilka BK., Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 2014;22:1657–64
[26] Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B., Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 2015;520:317–21
[27] Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC., Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 2010;132:11443–5
[28] Leelananda SP, Lindert S., Computational methods in drug discovery. Beilstein J Org Chem 2016;12:2694–718
[29] Sliwoski G, Kothiwale S, Meiler J, Lowe EW, Jr. Computational methods in drug discovery. Pharmacol Rev 2014;66:334–95
[30] Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH., Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 2012;55:1898–903
[31] Christopher JA, Aves SJ, Bennett KA, Dore AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, Congreve M., Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015;58:6653–64
[32] Wang S, Wacker D, Levit A, Che T, Betz RM, McCorvy JD, Venkatakrishnan AJ, Huang XP, Dror RO, Shoichet BK, Roth BL., D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 2017;358:381–6
[33] Hollingsworth SA, Dror RO., Molecular dynamics simulation for all. Neuron 2018;99:1129–43
[34] Lee Y, Lazim R, Macalino SJY, Choi S., Importance of protein dynamics in the structure-based drug discovery of class a G protein-coupled receptors (GPCRs). Curr Opin Struct Biol 2019;55:147–53
[35] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD., Improved protein-ligand docking using GOLD. Proteins 2003;52:609–23
[36] Sherman W, Day T, Jacobson MP, Friesner RA, Farid R., Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006;49:534–53
[37] Jhoti H, Rees S, Solari R., High-throughput screening and structure-based approaches to hit discovery: is there a clear winner? Expert Opin Drug Discov 2013;8:1449–53
[38] Koshland DE, Jr. Enzyme flexibility and enzyme action. J Cell Comp Physiol 1959;54:245–58
[39] Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R., Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 2000;9:10–9
[40] Rubin MM, Changeux JP., On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol 1966;21:265–74
[41] Lavecchia A, Di Giovanni C., Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 2013;20:2839–60
[42] Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE., A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 2011;51:408–19
[43] Rodriguez D, Gutierrez-de-Teran H., Computational approaches for ligand discovery and design in class-A G protein-coupled receptors. Curr Pharm Des 2013;19:2216–36
[44] Martin YC, Kofron JL, Traphagen LM., Do structurally similar molecules have similar biological activity? J Med Chem 2002;45:4350–8
[45] Favia AD., Theoretical and computational approaches to ligand-based drug discovery. Front Biosci 2011;16:1276–90
[46] Cheng J, Tegge AN, Baldi P., Machine learning methods for protein structure prediction. IEEE Rev Biomed Eng 2008;1:41–9
[47] Jabeen A, Ranganathan S., Applications of machine learning in GPCR bioactive ligand discovery. Curr Opin Struct Biol 2019;55:66–76
[48] Rosenbaum DM, Rasmussen SG, Kobilka BK., The structure and function of G-protein-coupled receptors. Nature 2009;459:356–63
[49] Mahoney JP, Sunahara RK., Mechanistic insights into GPCR-G protein interactions. Curr Opin Struct Biol 2016;41:247–54
[50] Gurevich VV, Gurevich EV., Molecular mechanisms of GPCR signaling: a structural perspective. Int J Mol Sci 2017;18:2519
[51] Wang J, Hua T, Liu ZJ., Structural features of activated GPCR signaling complexes. Curr Opin Struct Biol 2020;63:82–9
[52] Manglik A, Kruse AC., Structural basis for G protein-coupled receptor activation. Biochemistry 2017;56:5628–34
[53] Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC., Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 2015;347:1113–7
[54] Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE., Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 2013;503:295–9
[55] Guo D, Pan AC, Dror RO, Mocking T, Liu R, Heitman LH, Shaw DE, Ij AP., Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 2016;89:485–91
[56] McRobb FM, Negri A, Beuming T, Sherman W., Molecular dynamics techniques for modeling G protein-coupled receptors. Curr Opin Pharmacol 2016;30:69–75
[57] Ciancetta A, Sabbadin D, Federico S, Spalluto G, Moro S., Advances in computational techniques to study GPCR-Ligand recognition. Trends Pharmacol Sci 2015;36:878–90
[58] Chan HCS, Xu Y, Tan L, Vogel H, Cheng J, Wu D, Yuan S., Enhancing the signaling of GPCRs via orthosteric ions. ACS Cent Sci 2020;6:274–82
[59] Yuan X, Raniolo S, Limongelli V, Xu Y., The molecular mechanism underlying ligand binding to the membrane-embedded site of a G-protein-coupled receptor. J Chem Theory Comput 2018;14:2761–70
[60] Bueschbell B, Barreto CAV, Preto AJ, Schiedel AC, Moreira IS., A complete assessment of dopamine receptor- ligand interactions through. Comput Meth Mol 2019;24:1196
[61] Salmaso V, Jacobson KA., In silico drug design for purinergic GPCRs: overview on molecular dynamics applied to adenosine and P2Y receptors. Biomolecules 2020;10:812
[62] Wang J, Miao Y., Mechanistic insights into specific G protein interactions with adenosine receptors. J Phys Chem B 2019;123:6462–73
[63] Schneider G., Automating drug discovery. Nat Rev Drug Discov 2018;17:97–113
[64] Plante A, Shore DM, Morra G, Khelashvili G, Weinstein H., A machine learning approach for the discovery of ligand-specific functional mechanisms of GPCRs. Molecules 2019;24:2097
[65] Schonenbach NS, Hussain S, O'Malley MA., Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:408–27
[66] Topiol S., Current and future challenges in GPCR drug discovery. Methods Mol Biol 2018;1705:1–21
[67] Latorraca NR, Venkatakrishnan AJ, Dror RO., GPCR dynamics: structures in motion. Chem Rev 2017;117:139–55
[68] Borodovsky A, Barbon CM, Wang Y, Ye M, Prickett L, Chandra D, Shaw J, Deng N, Sachsenmeier K, Clarke JD, Linghu B, Brown GA, Brown J, Congreve M, Cheng RK, Dore AS, Hurrell E, Shao W, Woessner R, Reimer C, Drew L, Fawell S, Schuller AG, Mele DA., Small molecule AZD4635 inhibitor of A2AR signaling rescues immune cell function including CD103(+) dendritic cells enhancing anti-tumor immunity. J Immunother Cancer 2020;8:e000417
[69] Christ CD, Mark AE, van Gunsteren WF., Basic ingredients of free energy calculations: a review. J Comput Chem 2010;31:1569–82
[70] Reddy MR, Reddy CR, Rathore RS, Erion MD, Aparoy P, Reddy RN, Reddanna P., Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Curr Pharm Des 2014;20:3323–37
[71] Pires DEV, Veloso WNP, Myung Y, Rodrigues CHM, Silk M, Rezende PM, Silva F, Xavier JS, Velloso JPL, da Silveira CH, Ascher DB., EasyVS: a user-friendly web-based tool for molecule library selection and structure-based virtual screening. Bioinformatics 2020;36:4200–2
[72] de Vries SJ, Rey J, Schindler CEM, Zacharias M, Tuffery P., The pepATTRACT web server for blind, large-scale peptide-protein docking. Nucleic Acids Res 2017;45:W361–W64
[73] Fenollosa C, Oton M, Andrio P, Cortes J, Orozco M, Goni JR., SEABED: small molecule activity scanner weB servicE baseD. Bioinformatics 2015;31:773–5
[74] Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, Hou T., HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 2019;47:W322–30
[75] Labbe CM, Pencheva T, Jereva D, Desvillechabrol D, Becot J, Villoutreix BO, Pajeva I, Miteva MA., AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics. Nucleic Acids Res 2017;45:W350–55
[76] Labbe CM, Rey J, Lagorce D, Vavrusa M, Becot J, Sperandio O, Villoutreix BO, Tuffery P, Miteva MA., MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res 2015;43:W448–54
[77] Santos KB, Guedes IA, Karl ALM, Dardenne LE., Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP Protein-Peptide data set. J Chem Inf Model 2020;60:667–83
[78] Firestein S., How the olfactory system makes sense of scents. Nature 2001;413:211–8
[79] Bavan S, Sherman B, Luetje CW, Abaffy T., Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation. PLoS One 2014;9:e92064[10.1371/journal.pone.0092064]
[80] Yuan S, Dahoun T, Brugarolas M, Pick H, Filipek S, Vogel H., Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Commun Biol 2019;2:141
[81] Wisler JW, Xiao KH, Thomsen ARB, Lefkowitz RJ., Recent developments in biased agonism. Curr Opin Cell Biol 2014;27:18–24
[82] Wisler JW, Rockman HA, Lefkowitz RJ., Biased G protein-coupled receptor signaling changing the paradigm of drug discovery. Circulation 2018;137:2315–7
[83] Bermudez M, Nguyen TN, Omieczynski C, Wolber G., Strategies for the discovery of biased GPCR ligands. Drug Discov Today 2019;24:1031–7
[84] Costa-Neto CM, Parreiras ESLT, Bouvier M., A pluridimensional view of biased agonism. Mol Pharmacol 2016;90:587–95
[85] Weiss DR, Ahn S, Sassano MF, Kleist A, Zhu X, Strachan R, Roth BL, Lefkowitz RJ, Shoichet BK., Conformation guides molecular efficacy in docking screens of activated beta-2 adrenergic G protein coupled receptor. ACS Chem Biol 2013;8:1018–26
[86] Brogi S, Tafi A, Desaubry L, Nebigil CG., Discovery of GPCR ligands for probing signal transduction pathways. Front Pharmacol 2014;5:255
[87] Mannel B, Jaiteh M, Zeifman A, Randakova A, Moller D, Hubner H, Gmeiner P, Carlsson J., Structure-Guided screening for functionally selective D2 dopamine receptor ligands from a virtual chemical library. ACS Chem Biol 2017;12:2652–61
[88] McCorvy JD, Butler KV, Kelly B, Rechsteiner K, Karpiak J, Betz RM, Kormos BL, Shoichet BK, Dror RO, Jin J, Roth BL., Structure-inspired design of beta-arrestin-biased ligands for aminergic GPCRs. Nat Chem Biol 2018;14:126–34
[89] Patel N, Huang XP, Grandner JM, Johansson LC, Stauch B, McCorvy JD, Liu Y, Roth B, Katritch V., Structure-based discovery of potent and selective melatonin receptor agonists. Elife 2020;9:e53779.
[90] Marti-Solano M, Iglesias A, de Fabritiis G, Sanz F, Brea J, Loza MI, Pastor M, Selent J., Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation. Mol Pharmacol 2015;87:740–6
[91] Fischer T, Gazzola S, Riedl R., Approaching target selectivity by de novo drug design. Expert Opin Drug Discov 2019;14:791–803
[92] Schneider G, Clark DE., Automated de novo drug design: are we nearly there yet? Angew Chem Int Ed Engl 2019;58:10792–803
[93] Li Y, Sun Y, Song Y, Dai D, Zhao Z, Zhang Q, Zhong W, Hu LA, Ma Y, Li X, Wang R., Fragment-based computational method for designing GPCR ligands. J Chem Inf Model 2020;60:4339–49
[94] Basith S, Cui M, Macalino SJY, Park J, Clavio NAB, Kang S, Choi S., Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front Pharmacol 2018;9:128
[95] Dedic N, Jones PG, Hopkins SC, Lew R, Shao L, Campbell JE, Spear KL, Large TH, Campbell UC, Hanania T, Leahy E, Koblan KS., SEP-363856, a novel psychotropic agent with a unique, non-D2 receptor mechanism of action. J Pharmacol Exp Ther 2019;371:1–14
[96] Kawai K, Nagata N, Takahashi Y., De novo design of drug-like molecules by a fragment-based molecular evolutionary approach. J Chem Inf Model 2014;54:49–56
[97] Reutlinger M, Rodrigues T, Schneider P, Schneider G., Multi-objective molecular de novo design by adaptive fragment prioritization. Angew Chem Int Ed Engl 2014;53:4244–8
[98] Fedorov DG, Nagata T, Kitaura K., Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 2012;14:7562–77
[99] Chudyk EI, Sarrat L, Aldeghi M, Fedorov DG, Bodkin MJ, James T, Southey M, Robinson R, Morao I, Heifetz A., Exploring GPCR-Ligand interactions with the fragment molecular orbital (FMO) method. Methods Mol Biol 2018;1705:179–95
[100] Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V, Fedorov DG, Biggin PC, Bodkin MJ., The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. J Chem Inf Model 2016;56:159–72
[101] Heifetz A, James T, Southey M, Morao I, Aldeghi M, Sarrat L, Fedorov DG, Bodkin MJ, Townsend-Nicholson A., Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach. Curr Opin Struct Biol 2019;55:85–92
[102] Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T., The rise of deep learning in drug discovery. Drug Discov Today 2018;23:1241–50
[103] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz'min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A., QSAR modeling: where have you been? Where are you going to? J Med Chem 2014;57:4977–5010
[104] Rogers D, Hahn M., Extended-connectivity fingerprints. J Chem Inf Model 2010;50:742–54
[105] Jaeger S, Fulle S, Turk S., Mol2vec: unsupervised machine learning approach with chemical intuition. J Chem Inf Model 2018;58:27–35
[106] Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A., druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 2017;14:3098–104
[107] Liu X, Ye K, van Vlijmen HWT, AI, van Westen GJP., An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J Cheminform 2019;11:35
[108] Rataj K, Kelemen AA, Brea J, Loza MI, Bojarski AJ, Keseru GM., Fingerprint-based machine learning approach to identify potent and selective 5-HT2BR ligands. Molecules 2018;23:1137
[109] Crasto C, Marenco L, Miller P, Shepherd G., Olfactory receptor database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res 2002;30:354–60
[110] Bushdid C, de March CA, Fiorucci S, Matsunami H, Golebiowski J., Agonists of G-protein-coupled odorant receptors are predicted from chemical features. J Phys Chem Lett 2018;9:2235–40
[111] Priest BT, Bell IM, Garcia ML., Role of hERG potassium channel assays in drug development. Channels 2008;2:87–93
[112] Ryu JY, Lee MY, Lee JH, Lee BH, Oh KS., DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity. Bioinformatics 2020;36:3049–55
[113] Villoutreix BO, Taboureau O., Computational investigations of hERG channel blockers: new insights and current predictive models. Adv Drug Deliv Rev 2015;86:72–82
[114] Wang S, Li Y, Xu L, Li D, Hou T., Recent developments in computational prediction of HERG blockage. Curr Top Med Chem 2013;13:1317–26
[115] Taboureau O, Jorgensen FS., In silico predictions of hERG channel blockers in drug discovery: from ligand-based and target-based approaches to systems chemical biology. Comb Chem High Throughput Screen 2011;14:375–87
[116] Negami T, Araki M, Okuno Y, Terada T., Calculation of absolute binding free energies between the hERG channel and structurally diverse drugs. Sci Rep 2019;9:16586.
[117] Du-Cuny L, Chen L, Zhang S., A critical assessment of combined ligand- and structure-based approaches to HERG channel blocker modeling. J Chem Inf Model 2011;51:2948–60
[118] Braga RC, Alves VM, Silva MF, Muratov E, Fourches D, Liao LM, Tropsha A, Andrade CH., Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity. Mol Inform 2015;34:698–701
[119] Chemi G, Gemma S, Campiani G, Brogi S, Butini S, Brindisi M., Computational tool for fast in silico evaluation of hERG K(+) channel affinity. Front Chem 2017;5:7
[120] Zhang YM, Zhao JN, Wang YC, Fan YR, Zhu L, Yang Y, Chen XY, Lu T, Chen YD, Liu HC., Prediction of hERG K plus channel blockage using deep neural networks. Chem Biol Drug Des 2019;94:1973–85
[121] Cai C, Guo P, Zhou Y, Zhou J, Wang Q, Zhang F, Fang J, Cheng F., Deep learning-based prediction of drug-induced cardiotoxicity. J Chem Inf Model 2019;59:1073–84
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/2087
CollectionSchool of Medicine
School of Science and Engineering
Corresponding AuthorAn, J.
Affiliation
1.Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, United States
2.Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China
3.School of Life Sciences, Tsinghua University, Beijing, 100084, China
First Author AffilicationSchool of Medicine;  Ciechanover Institute of Precision and Regenerative Medicine
Corresponding Author AffilicationSchool of Medicine
Recommended Citation
GB/T 7714
Zhu, S.,Wu, M.,Huang, Z.et al. Trends in application of advancing computational approaches in GPCR ligand discovery[J]. Experimental Biology and Medicine,2021.
APA Zhu, S., Wu, M., Huang, Z., & An, J. (2021). Trends in application of advancing computational approaches in GPCR ligand discovery. Experimental Biology and Medicine.
MLA Zhu, S.,et al."Trends in application of advancing computational approaches in GPCR ligand discovery".Experimental Biology and Medicine (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Zhu, S.]'s Articles
[Wu, M.]'s Articles
[Huang, Z.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhu, S.]'s Articles
[Wu, M.]'s Articles
[Huang, Z.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhu, S.]'s Articles
[Wu, M.]'s Articles
[Huang, Z.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.