Details of Research Outputs

TitleFlexible Conductive Substrate Incorporating a Submicrometer Co-continuous Polyaniline Phase within Polyethylene by Controlled Crazing
Author (Name in English or Pinyin)
Kornberg, Anton B.1; Thompson, Michael R.1; Zhu, Shiping1,2
Date Issued2021-04-09
Source PublicationACS APPLIED POLYMER MATERIALS
ISSN2637-6105
DOI10.1021/acsapm.0c01416
Indexed BySCIE
Firstlevel Discipline材料科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 3 期: 4 页: 1880-1889
References
[1] Mozafari, M.; Chauhan, N. P. S.. Fundamentals and Emerging Applications of Polyaniline; Elsevier, 2019.
[2] Heeger, A. J. Polyaniline with Surfactant Counterions: Conducting Polymer Materials Which Are Processible in the Conducting Form. Synth. Met. 1993, 57, 3471-3482, 10.1016/0379-6779(93)90462-6
[3] Österholm, J.-E.; Cao, Y.; Klavetter, F.; Smith, P. Emulsion Polymerization of Aniline. Polym. 1994, 35, 2902-2906, 10.1016/0032-3861(94)90329-8
[4] Adams, P. N.; Laughlin, P. J.; Monkman, A. P. Synthesis of High Molecular Weight Polyaniline at Low Temperatures. Synth. Met. 1996, 76, 157-160, 10.1016/0379-6779(95)03442-M
[5] Kohlman, R. S.; Epstein, A. J. Insulator-Metal Transition and Inhomogeneous Metallic State in Conducting Polymers. OHIO STATE UNIV COLUMBUS DEPT OF PHYSICS: 1998, 2, 85-122.
[6] Ayad, M. M.; Salahuddin, N. A.; Alghaysh, M. O.; Issa, R. M. Phosphoric Acid and PH Sensors Based on Polyaniline Films. Curr. Appl. Phys. 2010, 10, 235-240, 10.1016/J.CAP.2009.05.030
[7] Virji, S.; Kaner, R. B.; Weiller, B. H. Hydrogen Sensors Based on Conductivity Changes in Polyaniline Nanofibers. J. Phys. Chem. B 2006, 110, 22266-22270, 10.1021/jp063166g
[8] Kim, M.-S.; Kim, S.; Kong, H. J.; Kwon, O. S.; Yoon, H. Tunable Electrical-Sensing Performance of Random-Alternating Layered Graphene/Polyaniline Nanoarchitectures. J. Phys. Chem. C 2016, 120, 18289-18295, 10.1021/acs.jpcc.6b03705
[9] Segal, E.; Tchoudakov, R.; Narkis, M.; Siegmann, A.; Yen, W. Polystyrene/Polyaniline Nanoblends for Sensing of Aliphatic Alcohols. Sens. Actuators, B 2005, 104, 140-150, 10.1016/j.snb.2004.05.002
[10] Kar, P.; Choudhury, A. Carboxylic Acid Functionalized Multi-Walled Carbon Nanotube Doped Polyaniline for Chloroform Sensors. Sens Actuators B Chem 2013, 183, 25-33, 10.1016/J.SNB.2013.03.093
[11] Yang, C. Y.; Reghu, M.; Heeger, A. J.; Cao, Y. Thermal Stability of Polyaniline Networks in Conducting Polymer Blends. Synth. Met. 1996, 79, 27-32, 10.1016/0379-6779(96)80126-3
[12] Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783-810, 10.1016/j.progpolymsci.2009.04.003
[13] Thompson, M. R.; Motlagh, G. H.; Oxby, K. J.; Hrymak, A. N. Multiple Percolation in a Carbon-Filled Polymer Composites via Foaming. J. Appl. Polym. Sci. 2010, 115, 646-654, 10.1002/app.30177
[14] Schilling, M.; Niebergall, U.; Alig, I.; Oehler, H.; Lellinger, D.; Meinel, D.; Böhning, M. Crack Propagation in PE-HD Induced by Environmental Stress Cracking (ESC) Analyzed by Several Imaging Techniques. Polym. Test. 2018, 70, 544-555, 10.1016/j.polymertesting.2018.08.014
[15] Saad, A. K.; Abdulhussain, H. A.; Gomes, F. P. C.; Vlachopoulos, J.; Thompson, M. R. Studying the Mechanism of Biodiesel Acting as an Environmental Stress Cracking Agent with Polyethylenes. Polym. 2020, 191, 122278, 10.1016/j.polymer.2020.122278
[16] Kornberg, A.; Thompson, M.; Zhu, S. Developing Continuous Submicron-Scale Conductive Interpenetrating Hydrogel Network in Polyethylene Matrices through Controlled Crazing and Polymerization. Ind. Eng. Chem. Res. 2020, 59, 6609, 10.1021/acs.iecr.9b07010
[17] Volynskii, A. L.; Aleskerov, A. G.; Grokhovskaya, T. Y.; Bakeyev, N. F. Mechanical Behavior of Glassy Polyethylene Terephthalate Deformed in Liquid Adsorption Active Media. Polym. Sci. U.S.S.R. 1976, 18, 2419-2426, 10.1016/0032-3950(76)90122-2
[18] Volynskii, A. L.; Bakeev, N. F. Solvent Crazing of Polymers; Newnes: 2012; Vol. 13.
[19] Rozanski, A.; Galeski, A. Plastic Yielding of Semicrystalline Polymers Affected by Amorphous Phase. Int. J. Plast. 2013, 41, 14-29, 10.1016/J.IJPLAS.2012.07.008
[20] Pawlak, A.; Galeski, A. Stability of Spherulite Growth Rate. J. Polym. Sci., Part B: Polym. Phys. 1990, 28, 1813-1821, 10.1002/polb.1990.090281012
[21] Nowacki, R.; Kolasinska, J.; Piorkowska, E. Cavitation during Isothermal Crystallization of Isotactic Polypropylene. J. Appl. Polym. Sci. 2001, 79, 2439-2448, 10.1002/1097-4628(20010328)79:13<2439::AID-APP1051>3.0.CO;2-#
[22] Bucknall, C. B. New Criterion for Craze Initiation. Polym. 2007, 48, 1030-1041, 10.1016/j.polymer.2006.12.033
[23] Pawlak, A.; Galeski, A.; Rozanski, A. Cavitation during Deformation of Semicrystalline Polymers. Prog. Polym. Sci. 2014, 39, 921-958, 10.1016/J.PROGPOLYMSCI.2013.10.007
[24] Ohtani, B.; Prieto-Mahaney, O. O.; Li, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol., A 2010, 216, 179-182, 10.1016/j.jphotochem.2010.07.024
[25] Han, Y.-G.; Kusunose, T.; Sekino, T. One-Step Reverse Micelle Polymerization of Organic Dispersible Polyaniline Nanoparticles. Synth. Met. 2009, 159, 123-131, 10.1016/J.SYNTHMET.2008.08.011
[26] Stejskal, J.; Kratochvíl, P.; Jenkins, A. D. The Formation of Polyaniline and the Nature of Its Structures. Polym. 1996, 37, 367-369, 10.1016/0032-3861(96)81113-X
[27] Gokel, G. W.; Dean, J. A. Dean's Handbook of Organic Chemistry; McGraw-Hill handbooks; McGraw-Hill, 2004.
[28] Federal Republic of Germany. Surface Tension Values of Some Common Polymers/Test Liquids for Surface Energy Analysis.
[29] Rozanski, A.; Galeski, A. Controlling Cavitation of Semicrystalline Polymers during Tensile Drawing. Macromolecules 2011, 44, 7273-7287, 10.1021/ma201090z
[30] Shreepathi, S.; Holze, R. Spectroelectrochemical Investigations of Soluble Polyaniline Synthesized via New Inverse Emulsion Pathway. Chem. Mater. 2005, 17, 4078-4085, 10.1021/cm050117s
[31] Zheng, W.-Y.; Levon, K.; Taka, T.; Laakso, J.; Österholm, J.-E. Doping-Induced Layered Structure in N-Alkylated Polyanilines. Polym. J. 1996, 28, 412-418, 10.1295/polymj.28.412
[32] Levon, K.; Ho, K.-H.; Zheng, W.-Y.; Laakso, J.; Kärnä, T.; Taka, T.; Österholm, J.-E. Thermal Doping of Polyaniline with Dodecylbenzene Sulfonic Acid without Auxiliary Solvents. Polym. 1995, 36, 2733-2738, 10.1016/0032-3861(95)93650-B
[33] Kumar, A.; Kumar, V.; Sain, P. K.; Kumar, M.; Awasthi, K. Synthesis and Characterization of Polyaniline Membranes with-Secondary Amine Additive Containing N,N′-Dimethyl Propylene Urea for Fuel Cell Application. Int. J. Hydrogen Energy 2018, 43, 21715-21723, 10.1016/J.IJHYDENE.2018.04.083
[34] Zhang, F.; Halverson, P. A.; Lunt, B.; Linford, M. R. Wet Spinning of Pre-Doped Polyaniline into an Aqueous Solution of a Polyelectrolyte. Synth. Met. 2006, 156, 932-937, 10.1016/J.SYNTHMET.2006.06.002
[35] Hassan, P. A.; Sawant, S. N.; Bagkar, N. C.; Yakhmi, J. V. Polyaniline Nanoparticles Prepared in Rodlike Micelles. Langmuir 2004, 20, 4874-4880, 10.1021/la0498096
[36] Seguela, R.; Elkoun, S.; Gaucher-Miri, V. Plastic Deformation of Polyethylene and Ethylene Copolymers: Part II Heterogeneous Crystal Slip and Strain-Induced Phase Change. J. Mater. Sci. 1998, 33, 1801-1807, 10.1023/A:1004340902180
[37] Gomes, F. P. C.; West, W. T. J.; Thompson, M. R. Effects of Annealing and Swelling to Initial Plastic Deformation of Polyethylene Probed by Nonlinear Ultrasonic Guided Waves. Polym. 2017, 131, 160-168, 10.1016/j.polymer.2017.10.041
Citation statistics
Cited Times:4[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/2206
CollectionSchool of Science and Engineering
Corresponding AuthorThompson, Michael R.; Zhu, Shiping
Affiliation
1.McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L8, Canada
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
Recommended Citation
GB/T 7714
Kornberg, Anton B.,Thompson, Michael R.,Zhu, Shiping. Flexible Conductive Substrate Incorporating a Submicrometer Co-continuous Polyaniline Phase within Polyethylene by Controlled Crazing[J]. ACS APPLIED POLYMER MATERIALS,2021.
APA Kornberg, Anton B., Thompson, Michael R., & Zhu, Shiping. (2021). Flexible Conductive Substrate Incorporating a Submicrometer Co-continuous Polyaniline Phase within Polyethylene by Controlled Crazing. ACS APPLIED POLYMER MATERIALS.
MLA Kornberg, Anton B.,et al."Flexible Conductive Substrate Incorporating a Submicrometer Co-continuous Polyaniline Phase within Polyethylene by Controlled Crazing".ACS APPLIED POLYMER MATERIALS (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Kornberg, Anton B.]'s Articles
[Thompson, Michael R.]'s Articles
[Zhu, Shiping]'s Articles
Baidu academic
Similar articles in Baidu academic
[Kornberg, Anton B.]'s Articles
[Thompson, Michael R.]'s Articles
[Zhu, Shiping]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Kornberg, Anton B.]'s Articles
[Thompson, Michael R.]'s Articles
[Zhu, Shiping]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.