Details of Research Outputs

TitleDirect observation of the skyrmion Hall effect
Author (Name in English or Pinyin)
Jiang, Wanjun1,2,3,4; Zhang, Xichao5; Yu, Guoqiang6; Zhang, Wei1,7; Wang, Xiao8; Jungfleisch, M. Benjamin1; Pearson, John E.1; Cheng, Xuemei8; Heinonen, Olle1,9; Wang, Kang L.6; Zhou, Yan5; Hoffmann, Axel1; te Velthuis, Suzanne G. E.1
Date Issued2017-02-01
Source PublicationNature Physics
AbstractThe well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultant skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. The experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.
Indexed BySCIE
Funding Project国家自然科学基金项目
WOS Research AreaPhysics
WOS SubjectPhysics, Multidisciplinary
WOS IDWOS:000394070700023
Original Document TypeArticle
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 13 期: 2 页: 162-169
[1] Mühlbauer, S. , et al. Skyrmion lattice in a chiral magnet. Science 323, 915-919 (2009).
[2] Yu, X. Z. , et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901-904 (2010).
[3] Zang, J. D., Mostovoy, M., Han, J. H., Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).
[4] Braun, H. B. Topological e-ects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1-116 (2012).
[5] Lin, S. Z., Reichhardt, C., Batista, C. D., Saxena, A. Driven skyrmions and dynamical transitions in chiral magnets. Phys. Rev. Lett. 110, 207202 (2013).
[6] Nagaosa, N., Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899-911 (2013).
[7] Everschor-Sitte, K., Sitte, M. Real-space Berry phases: skyrmion soccer (invited). J. Appl. Phys. 115, 172602 (2014).
[8] Zhou, Y., Ezawa, M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, 4652 (2014).
[9] Büttner, F. , et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225-228 (2015).
[10] Schulz, T. , et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301-304 (2012).
[11] Milde, P. , et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076-1080 (2013).
[12] Heinze, S. , et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713-718 (2011).
[13] Thiaville, A., Rohart, S., Jue, E., Cros, V., Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).
[14] Fert, A., Cros, V., Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152-156 (2013).
[15] Chen, G. , et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys. Rev. Lett. 110, 177204 (2013).
[16] Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839-844 (2013).
[17] Rohart, S., Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184422 (2013).
[18] Jiang, W. J. , et al. Blowing magnetic skyrmion bubbles. Science 349, 283-286 (2015).
[19] Chen, G., Mascaraque, A., N'Diaye, A. T., Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).
[20] Woo, S. , et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501-506 (2016).
[21] Boulle, O. , et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449-454 (2016).
[22] Moreau-Luchaire, C. , et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444-448 (2016).
[23] Yu, G. , et al. Room-temperature creation and spin-orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981-1988 (2016).
[24] Miron, I. M. , et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189-193 (2011).
[25] Liu, L. Q. , et al. Spin-torque switching with the giant spin Hall e-ect of tantalum. Science 336, 555-558 (2012).
[26] Ho-mann, A. Spin hall e-ects in metals. IEEE Trans. Magn. 49, 5172-5193 (2013).
[27] Yu, G. , et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. Nanotech. 9, 548-554 (2014).
[28] Lin, S.-Z. Edge instability in a chiral stripe domain under an electric current and skyrmion generation. Phys. Rev. B 94, 020402(R) (2016).
[29] Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973).
[30] Tomasello, R. , et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).
[31] Zhang, X., Zhou, Y., Motohiko, E. Magnetic bilayer-skyrmions without skyrmion Hall e-ect. Nat. Commun. 7, 10293 (2016).
[32] Jonietz, F. , et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648-1651 (2010).
[33] Müller, J., Rosch, A. Capturing of a magnetic skyrmion with a hole. Phys. Rev. B 91, 054410 (2015).
[34] Reichhardt, C., Ray, D., Reichhardt, C. J. O. Collective transport properties of driven skyrmions with random disorder. Phys. Rev. Lett. 114, 217202 (2015).
[35] Reichhardt, C., Reichhardt, C. J. O. Drive dependence of the skyrmion Hall e-ect in disordered systems. Preprint at (2016).
[36] Makhfudz, I., Krüger, B., Tchernyshyov, O. Inertia and chiral edge modes of a skyrmion magnetic bubble. Phys. Rev. Lett. 109, 217201 (2012).
[37] Heinonen, O., Jiang, W., Somaily, H., Velthuis, S. G. E., Ho-mann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016).
[38] Malozemo-, A. P. Mobility of bubbles with small numbers of Bloch lines. J. Appl. Phys. 44, 5080 (1973).
[39] Malozemo-, A. P., Slonczewski, J. C. Magnetic DomainWalls in Bubble Materials (Academic Press, 1979).
[40] Emori, S., Bauer, U., Ahn, S. M., Martinez, E., Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat.Mater. 12, 611-616 (2013).
[41] Hrabec, A. , et al. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 0204402(R) (2014).
[42] Reichhardt, C., Ray, D., Reichhardt, C. J. O. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate. Phys. Rev. B 91, 104426 (2015).
[43] Lin, S. Z., Reichhardt, C., Batista, C. D., Saxena, A. Particle model for skyrmions in metallic chiral magnets: dynamics, pinning, and creep. Phys. Rev. B 87, 214419 (2013).
[44] Meynell, S. A., Wilson, M. N., Fritzsche, H., Bogdanov, A. N., Monchesky, T. L. Surface twist instabilities and skyrmion states in chiral ferromagnets. Phys. Rev. B 90, 014406 (2014).
[45] Iwasaki, J., Koshibae, W., Nagaosa, N. Colossal spin transfer torque e-ect on skyrmion along the edge. Nano Lett. 14, 4432-4437 (2014).
[46] Neubauer, A. , et al. Topological Hall e-ect in the a phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).
[47] Vélez, M. , et al. Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 320, 2547-2562 (2008).
Data SourceWOS
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorJiang, Wanjun; Hoffmann, Axel; te Velthuis, Suzanne G. E.
1.Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
2.Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
3.Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
4.Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
5.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Peoples R China
6.Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
7.Oakland Univ, Dept Phys, Rochester, MI 48309 USA
8.Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA
9.Northwestern Univ, Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
Recommended Citation
GB/T 7714
Jiang, Wanjun,Zhang, Xichao,Yu, Guoqianget al. Direct observation of the skyrmion Hall effect[J]. Nature Physics,2017,13(2):162-169.
APA Jiang, Wanjun., Zhang, Xichao., Yu, Guoqiang., Zhang, Wei., Wang, Xiao., .. & te Velthuis, Suzanne G. E. (2017). Direct observation of the skyrmion Hall effect. Nature Physics, 13(2), 162-169.
MLA Jiang, Wanjun,et al."Direct observation of the skyrmion Hall effect".Nature Physics 13.2(2017):162-169.
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Jiang, Wanjun]'s Articles
[Zhang, Xichao]'s Articles
[Yu, Guoqiang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Jiang, Wanjun]'s Articles
[Zhang, Xichao]'s Articles
[Yu, Guoqiang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Jiang, Wanjun]'s Articles
[Zhang, Xichao]'s Articles
[Yu, Guoqiang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.