Details of Research Outputs

TitleMechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin*
Author (Name in English or Pinyin)
Yang, Chengxi1; Li, Peng1; Wang, Pan1; Zhu, Bao Ting1,2
Date Issued2021-09-01
Indexed BySCIE
Firstlevel Discipline生物学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 107
[1] Hamberg, M., Samuelsson, B., Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J. Biol. Chem. 242 (1967), 5344–5354.
[2] Miyamoto, T., Ogino, N., Yamamoto, S., Hayaishi, O., Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J. Biol. Chem. 251 (1976), 2629–2636.
[3] Rouzer, C.A., Marnett, L.J., Cyclooxygenases: structural and functional insights. J. Lipid Res. 50:Suppl (2009), S29–S34, 10.1194/jlr.R800042-JLR200.
[4] Marnett, L.J., Rowlinson, S.W., Goodwin, D.C., Kalgutkar, A.S., Lanzo, C.A., Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J. Biol. Chem. 274 (1999), 22903–22906, 10.1074/jbc.274.33.22903.
[5] Kurumbail, R.G., Kiefer, J.R., Marnett, L.J., Cyclooxygenase enzymes: catalysis and inhibition. Curr. Opin. Struct. Biol. 11 (2001), 752–760, 10.1016/s0959-440x(01)00277-9.
[6] Marnett, L.J., Cyclooxygenase mechanisms. Curr. Opin. Chem. Biol. 4 (2000), 545–552, 10.1016/s1367-5931(00)00130-7.
[7] Wu, G., Wei, C., Kulmacz, R.J., Osawa, Y., Tsai, A.L., A mechanistic study of self-inactivation of the peroxidase activity in prostaglandin H synthase-1. J. Biol. Chem. 274 (1999), 9231–9237, 10.1074/jbc.274.14.9231.
[8] Callan, O.H., So, O.Y., Swinney, D.C., The kinetic factors that determine the affinity and selectivity for slow binding inhibition of human prostaglandin H synthase 1 and 2 by indomethacin and flurbiprofen. J. Biol. Chem. 271 (1996), 3548–3554, 10.1074/jbc.271.7.3548.
[9] Bai, H.W., Zhu, B.T., Strong activation of cyclooxygenase I and II catalytic activity by dietary bioflavonoids. J. Lipid Res. 49 (2008), 2557–2570, 10.1194/jlr.M800358-JLR200.
[10] Wang, P., Bai, H.W., Zhu, B.T., Structural basis for certain naturally occurring bioflavonoids to function as reducing co-substrates of cyclooxygenase I and II. PloS One, 5, 2010, e12316, 10.1371/journal.pone.0012316.
[11] Dassault Systèmes BIOVIA, Discovery Studio, Version 2015, Dassault Systèmes, San Diego.
[12] Miciaccia, M., Belviso, B. D., Iaselli, M., Ferorelli, S., Perrone, M.G., Caliandro, R., & Scilimati, A. doi: 10.2210/pdb6Y3C/pdb (2020).
[13] Orlando, B.J., Malkowski, M.G., Crystal structure of rofecoxib bound to human cyclooxygenase-2. Acta Crystallogr. F Struct. Biol. Commun. 72 (2016), 772–776, 10.1107/S2053230X16014230.
[14] Brooks, B.R., et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30 (2009), 1545–1614, 10.1002/jcc.21287.
[15] Yang, C., Li, P., Ding, X., Sui, H.C., Rao, S., Hsu, C.H., Leung, W.P., Cheng, G.J., Wang, P., Zhu, B.T., Mechanism for the reactivation of the peroxidase activity of human cyclooxygenases: investigation using phenol as a reducing cosubstrate. Sci. Rep., 10, 2020, 15187, 10.1038/s41598-020-71237-x.
[16] Feig, M., et al. Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem. 25 (2004), 265–284, 10.1002/jcc.10378.
[17] Uciechowska, U., et al. Binding free energy calculations and biological testing of novel thiobarbiturates as inhibitors of the human NAD+ dependent histone deacetylase Sirt2. Med. Chem. Commun. 3 (2012), 167–173, 10.1039/C1MD00214G.
[18] Pouplana, R., Lozano, J.J., Ruiz, J., Molecular modelling of the differential interaction between several non-steroidal anti-inflammatory drugs and human prostaglandin endoperoxide H synthase-2 (h-PGHS-2). J. Mol. Graph. Model. 20 (2002), 329–343, 10.1016/s1093-3263(01)00133-4.
[19] Frisch, M.J., et al. Gaussian 09 Rev. D.01. Gaussian 09. 2009.
[20] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys. 38 (1988), 3098–3100, 10.1103/physreva.38.3098.
[21] Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 1993, 5648, 10.1063/1.464913.
[22] Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37 (1988), 785–789, 10.1103/physrevb.37.785.
[23] Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98 (1994), 11623–11627, 10.1021/j100096a001.
[24] Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 2010, 154104, 10.1063/1.3382344.
[25] Miertuš, S., Scrocco, E., Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55 (1981), 117–129, 10.1016/0301-0104(81)85090-2.
[26] Miertuš, S., Tomasi, J., Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 65 (1982), 239–245, 10.1016/0301-0104(82)85072-6.
[27] Pascual-Ahuir, J.L., Silla, E., Tuñón, I., GEPOL: an improved description of molecular-surfaces. 3. A new algorithm for the computation of a solvent-excluding surface. J. Comput. Chem. 15 (1994), 1127–1138, 10.1002/jcc.540151009.
[28] McLean, A.D., Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J. Chem. Phys., 72, 1980, 5639, 10.1063/1.438980.
[29] Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 72, 1980, 650, 10.1063/1.438955.
[30] Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V.R., Efficient diffuse function-augmented basis sets for anion calculations. III.† the 3-21+G basis set for first-row elements, Li–F. J. Comput. Chem. 4 (1983), 294–301, 10.1002/jcc.540040303.
[31] Frisch, M.J., Pople, J.A., Binkley, J.S., Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys., 80, 1984, 3265, 10.1063/1.447079.
[32] Domingo, L.R., Chamorro, E., Perez, P., Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 73 (2008), 4615–4624, 10.1021/jo800572a.
[33] Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33 (2012), 580–592, 10.1002/jcc.22885.
[34] Lu, T., Multiwfn Software Manual, 3.100.12. 2019, Beijing Kein Research Center for Natural Sciences.
[35] Wang, H.R., Sui, H.C., Zhu, B.T., Ellagic acid, a plant phenolic compound, activates cyclooxygenase-mediated prostaglandin production. Exp. Ther. Med. 18 (2019), 987–996, 10.3892/etm.2019.7667.
[36] Wang, H.R., Sui, H.C., Ding, Y.Y., Zhu, B.T., Stimulation of the production of prostaglandin E2 by ethyl gallate, a natural phenolic compound richly contained in Longan. Biomolecules, 8, 2018, 10.3390/biom8030091.
[37] de Visser, S.P., Ogliaro, F., Harris, N., Shaik, S., Multi-state epoxidation of ethene by cytochrome P450: a quantum chemical study. J. Am. Chem. Soc. 123 (2001), 3037–3047, 10.1021/ja003544+.
[38] Filatov, M., Harris, N., Shaik, S., A theoretical study of electronic factors affecting hydroxylation by model ferryl complexes of cytochrome P-450 and horseradish peroxidase. J. Chem. Soc. Perkin Trans. 2 (1999), 399–410, 10.1039/A809385G.
[39] Ogliaro, F., Cohen, S., Filatov, M., Harris, N., Shaik, S., The high-valent compound of cytochrome P450: the nature of the Fe-S bond and the role of the thiolate ligand as an internal electron donor. Angew Chem. Int. Ed. Engl. 39 (2000), 3851–3855, 10.1002/1521-3773(20001103)39:21<3851::AID-ANIE3851>3.0.CO;2-9.
[40] Bai, H.W., Yang, C., Wang, P., Rao, S., Zhu, B.T., Inhibition of cyclooxygenase by blocking the reducing cosubstrate at the peroxidase site: Discovery of galangin as a novel cyclooxygenase inhibitor. Eur. J. Pharmacol., 899, 2021, 174036.
[41] Landino, L.M., Crews, B.C., Gierse, J.K., Hauser, S.D., Marnett, L.J., Mutational analysis of the role of the distal histidine and glutamine residues of prostaglandin-endoperoxide synthase-2 in peroxidase catalysis, hydroperoxide reduction, and cyclooxygenase activation. J. Biol. Chem. 272 (1997), 21565–21574, 10.1074/jbc.272.34.21565.
[42] Zhang, J., Zhang, H., Wu, T., Wang, Q., van der Spoel, D., Comparison of implicit and explicit solvent models for the calculation of solvation free energy in organic solvents. J. Chem. Theor. Comput. 13:3 (2017), 1034–1043.
[43] Chen, Y.C., Beware of docking!. Trends Pharmacol. Sci. 36:2 (2015), 78–95.
[44] Christov, C.Z., Lodola, A., Karabencheva-Christova, T.G., Wan, S., Coveney, P.V., Mulholland, A.J., Conformational effects on the pro-s hydrogen abstraction reaction in Cyclooxygenase-1: an integrated QM/MM and MD study. Biophys. J. 104:5 (2013), L5–L7.
[45] Ainsley, J., Lodola, A., Mulholland, A.J., Christov, C.Z., Karabencheva-Christova, T.G., Combined quantum mechanics and molecular mechanics studies of enzymatic reaction mechanisms. Adv. Protein Chem. Struct. Biol. 113 (2018), 1–32.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Medicine
Co-First AuthorLi, Peng
Corresponding AuthorZhu, Bao Ting
1.Chinese Univ Hong Kong , Sch Life & Hlth Sci, Shenzhen Key Lab Steroid Drug Discovery & Dev, Shenzhen 518172, Peoples R China
2.Shenzhen Bay Lab, Shenzhen 518055, Peoples R China
Recommended Citation
GB/T 7714
Yang, Chengxi,Li, Peng,Wang, Panet al. Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin*[J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING,2021.
APA Yang, Chengxi, Li, Peng, Wang, Pan, & Zhu, Bao Ting. (2021). Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin*. JOURNAL OF MOLECULAR GRAPHICS & MODELLING.
MLA Yang, Chengxi,et al."Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin*".JOURNAL OF MOLECULAR GRAPHICS & MODELLING (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Yang, Chengxi]'s Articles
[Li, Peng]'s Articles
[Wang, Pan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yang, Chengxi]'s Articles
[Li, Peng]'s Articles
[Wang, Pan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yang, Chengxi]'s Articles
[Li, Peng]'s Articles
[Wang, Pan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.