Details of Research Outputs

TitleAssessing the performance of Traveling-salesman based Automated Path Searching (TAPS) on complex biomolecular systems
Author (Name in English or Pinyin)
Xi, Kun1,2; Hu, Zhenquan1,2; Wu, Qiang3; Wei, Meihan1; Qian, Runtong1; Zhu, Lizhe1
Date Issued2021-07-16
Source PublicationJournal of Chemical Theory and Computation
Indexed BySCIE
Funding Project国家自然科学基金项目
Firstlevel Discipline化学
Education discipline科技类
The number of words45
Published range国外学术期刊
Volume Issue Pages17/ 8 / 5301-5311
[1] Rohrdanz, M. A.; Zheng, W.; Clementi, C. Discovering mountain passes via torchlight: Methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. Annu. Rev. Phys. Chem. 2013, 64, 295-316, 10.1146/annurev-physchem-040412-110006
[2] Malmstrom, R. D.; Lee, C. T.; Van Wart, A. T.; Amaro, R. E. Application of molecular-dynamics based markov state models to functional proteins. J. Chem. Theory Comput. 2014, 10, 2648-2657, 10.1021/ct5002363
[3] Bowman, G. R.; Huang, X.; Pande, V. S. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 2009, 49, 197-201, 10.1016/j.ymeth.2009.04.013
[4] Huang, X.; Bowman, G. R.; Bacallado, S.; Pande, V. S. Rapid equilibrium sampling initiated from nonequilibrium data. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19765-19769, 10.1073/pnas.0909088106
[5] Zhang, B. W.; Dai, W.; Gallicchio, E.; He, P.; Xia, J. C.; Tan, Z. Q.; Levy, R. M. Simulating replica exchange: Markov state models, proposal schemes, and the infinite swapping limit. J. Phys. Chem. B 2016, 120, 8289-8301, 10.1021/acs.jpcb.6b02015
[6] Morcos, F.; Chatterjee, S.; McClendon, C. L.; Brenner, P. R.; López-Rendón, R.; Zintsmaster, J.; Ercsey-Ravasz, M.; Sweet, C. R.; Jacobson, M. P.; Peng, J. W.; Izaguirre, J. A. Modeling conformational ensembles of slow functional motions in Pin1-WW. PLoS Comput. Biol. 2010, 6, e1001015 10.1371/journal.pcbi.1001015
[7] Prinz, J. H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J. D.; Schütte, C.; Noé, F. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys. 2011, 134, 174105 10.1063/1.3565032
[8] Husic, B. E.; Pande, V. S. Markov state models: From an art to a science. J. Am. Chem. Soc. 2018, 140, 2386-2396, 10.1021/jacs.7b12191
[9] Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K. A.; Swope, W. C. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 2007, 126, 155101 10.1063/1.2714538
[10] Pan, A. C.; Roux, B. Building Markov state models along pathways to determine free energies and rates of transitions. J. Chem. Phys. 2008, 129, 064107 10.1063/1.2959573
[11] Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 2002, 53, 291-318, 10.1146/annurev.physchem.53.082301.113146
[12] Moroni, D.; van Erp, T. S.; Bolhuis, P. G. Investigating rare events by transition interface sampling. Physica A 2004, 340, 395-401, 10.1016/j.physa.2004.04.033
[13] Bolhuis, P. G. Rare events via multiple reaction channels sampled by path replica exchange. J. Chem. Phys. 2008, 129, 114108 10.1063/1.2976011
[14] Swenson, D. W. H.; Bolhuis, P. G. A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events. J. Chem. Phys. 2014, 141, 07B617_1 10.1063/1.4890037
[15] Du, W.; Bolhuis, P. G. Equilibrium kinetic network of the villin headpiece in implicit solvent. Biophys. J. 2015, 108, 368-378, 10.1016/j.bpj.2014.11.3476
[16] Cabriolu, R.; Skjelbred Refsnes, K. M.; Bolhuis, P. G.; van Erp, T. S. Foundations and latest advances in replica exchange transition interface sampling. J. Chem. Phys. 2017, 147, 152722 10.1063/1.4989844
[17] Best, R. B.; Hummer, G. Reaction coordinates and rates from transition paths. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6732-6737, 10.1073/pnas.0408098102
[18] Weinan, W.; Vanden-Eijnden, E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 2010, 61, 391-420, 10.1146/annurev.physchem.040808.090412
[19] Peters, B. Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 2016, 67, 669-690, 10.1146/annurev-physchem-040215-112215
[20] Faidon, B. Z.; Bolhuis, P. G. Approximating free energy and committor landscapes in standard transition path sampling using virtual interface exchange. J. Chem. Phys. 2019, 151, 174111 10.1063/1.5119252
[21] Ee, W.; Ren, W.; Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 2002, 66, 052301 10.1103/PhysRevB.66.052301
[22] Ren, W.; Vanden-Eijnden, E.; Maragakis, P.; Weinan, E. Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide. J. Chem. Phys. 2005, 123, 134109 10.1063/1.2013256
[23] Ee, W.; Ren, W.; Vanden-Eijnden, E. Finite temperature string method for the study of rare events. J. Phys. Chem. B 2005, 109, 6688-6693, 10.1021/jp0455430
[24] Maragliano, L.; Fischer, A.; Vanden-Eijnden, E. String method in collective variables: Minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 2006, 125, 024106 10.1063/1.2212942
[25] Maragliano, L.; Vanden-Eijnden, E. On-the-fly string method for minimum free energy paths calculation. Chem. Phys. Lett. 2007, 446, 182-190, 10.1016/j.cplett.2007.08.017
[26] Vanden-Eijnden, E.; Maddalena, V. Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J. Chem. Phys. 2009, 130, 194103 10.1063/1.3130083
[27] Leines, G. D.; Ensing, B. Path finding on high-dimensional free energy landscape. Phys. Rev. Lett. 2012, 109, 020601 10.1103/PhysRevLett.109.020601
[28] Chen, C.; Huang, Y.; Jiang, X.; Xiao, Y. A fast tomographic method for searching the minimum free energy path. J. Chem. Phys. 2014, 15, 154109 10.1063/1.4897983
[29] Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141-151, 10.1016/S0009-2614(99)01123-9
[30] Pan, A. C.; Sezer, D.; Roux, B. Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. B 2008, 112, 3432-3440, 10.1021/jp0777059
[31] Weiss, D. R.; Levitt, M. Can morphing methods predict intermediate structures?. J. Mol. Biol. 2009, 385, 665-674, 10.1016/j.jmb.2008.10.064
[32] Schlitter, J.; Engels, M.; Krüger, P. Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graphics 1994, 12, 84-89, 10.1016/0263-7855(94)80072-3
[33] Isralewitz, B.; Gao, M.; Schulten, K. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 2001, 11, 224-230, 10.1016/S0959-440X(00)00194-9
[34] Mitsutake, A.; Sugita, Y.; Okamoto, Y. Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 2001, 60, 96-123, 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
[35] Vreede, J.; Juraszek, J.; Bolhuis, P. G. Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 2397-2402, 10.1073/pnas.0908754107
[36] Lee, J.; Lee, I. H.; Joung, I. S.; Lee, J.; Brooks, B. R. Finding multiple reaction pathways via global optimization of action. Nat. Commun. 2017, 8, 15443 10.1038/ncomms15443
[37] Shukla, D.; Meng, Y.; Roux, B.; Pande, V. S. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun. 2014, 5, 3397 10.1038/ncomms4397
[38] Gan, W.; Yang, S.; Roux, B. Atomistic view of the conformational activation of Src kinase using the string method with swarms-of-trajectories. Biophys. J. 2009, 97, L8-L10, 10.1016/j.bpj.2009.06.016
[39] Pontiggia, F.; Pachov, D. V.; Clarkson, M. W.; Villali, J.; Hagan, M. F.; Pande, V. S.; Kern, D. Free energy landscape of activation in a signaling protein at atomic resolution. Nat. Commun. 2015, 6, 7284 10.1038/ncomms8284
[40] Wang, X.; Unarta, I. C.; Cheung, P. P.-H.; Huang, X. Elucidating molecular mechanisms of functional conformational changes of proteins via Markov state models. Curr. Opin. Struct. Biol. 2021, 67, 69-77, 10.1016/
[41] Wang, W.; Cao, S. Q.; Zhu, L. Z.; Huang, X. Constructing Markov State Models to elucidate the functional conformational changes of complex biomolecules. WIREs Comput. Mol. Sci. 2018, 8, e1343 10.1002/wcms.1343
[42] Branduardi, D.; Gervasio, F. L.; Parrinello, M. From A to B in free energy space. J. Chem. Phys. 2007, 126, 054103 10.1063/1.2432340
[43] Zhu, L. Z.; Sheong, F. K.; Cao, S. Q.; Liu, S.; Unarta, I. C.; Huang, X. TAPS: A traveling-salesman based automated path searching method for functional conformational changes of biological macromolecules. J. Chem. Phys. 2019, 150, 124105 10.1063/1.5082633
[44] Cox, M. A. A.; Cox, T. F. Multidimensional Scaling. In Handbook of Data Visualization; Chen, C.-h.; Härde, W. K.; Unwin, A., Eds.; Springer: Berlin, 2008; pp 315-347.
[45] Hénin, J.; Chipot, C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 2004, 121, 2904-2914, 10.1063/1.1773132
[46] Eriksson, A. E.; Baase, W. A.; Wozniak, J. A.; Matthews, B. W. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 1992, 355, 371-373, 10.1038/355371a0
[47] Bouvignies, G.; Vallurupalli, P.; Hansen, D. F.; Correia, B. E.; Lange, O.; Bah, A.; Vernon, R. M.; Dahlquist, F. W.; Baker, D.; Kay, L. E. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 2011, 477, 111-114, 10.1038/nature10349
[48] Brotzakis, Z. F.; Parrinello, M. Enhanced sampling of protein conformational transitions via dynamically optimized collective variables. J. Chem. Theory. Comput. 2019, 15, 1393-1398, 10.1021/acs.jctc.8b00827
[49] Fischmann, T. O.; Smith, C. K.; Mayhood, T. W.; Myers, J. E.; Reichert, J. P.; Mannarino, A.; Carr, D.; Zhu, H.; Wong, J.; Yang, R. S.; Le, H. V.; Madison, V. S. Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 2009, 48, 2661-2674, 10.1021/bi801898e
[50] Tyler, R. C.; Mrray, N. J.; Peterson, F. C.; Volkman, B. F. Native-state interconversion of a metamorphic protein requires global unfolding. Biochemistry 2011, 50, 7077-7079, 10.1021/bi200750k
[51] Harvey, S. R.; Porrini, M.; Konijnenberg, A.; Clarke, D. J.; Tyler, R. C.; Langridge-Smith, P. R. R.; MacPhee, C. E.; Volkman, B. F.; Barran, P. E. Dissecting the dynamic conformations of the metamorphic protein lymphotactin. J. Phys. Chem. B 2014, 118, 12348-12359, 10.1021/jp504997k
[52] Tuinstra, R. L.; Peterson, F. C.; Elgin, E. S.; Pelzek, A. J.; Volkman, B. F. An engineered second disulfide bond restricts lymphotactin/XCL1 to a chemokine-like conformation with XCR1 agonist activity. Biochemistry 2007, 46, 2564-2573, 10.1021/bi602365d
[53] Fox, J. C.; Thomas, M. A.; Dishman, A. F.; Larsen, O.; Nakayama, T.; Yoshie, O.; Rosenkilde, M. M.; Volkman, B. F. Structure-function guided modeling of chemokine-GPCR specificity for the chemokine XCL1 and its receptor XCR1. Sci. Signal. 2019, 12, eaat4128 10.1126/scisignal.aat4128
[54] Saunders, M. G.; Voth, G. A. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 2013, 42, 73-93, 10.1146/annurev-biophys-083012-130348
[55] Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12562-12566, 10.1073/pnas.202427399
[56] Barducci, A.; Bussi, G.; Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100, 020603 10.1103/PhysRevLett.100.020603
[57] Moradi, M.; Enkavi, G.; Tajkhorshid, E. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate: phosphate antiporter. Nat. Commun. 2015, 6, 8393 10.1038/ncomms9393
[58] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25, 10.1016/j.softx.2015.06.001
[59] Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604-613, 10.1016/j.cpc.2013.09.018
[60] Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W. J. The Traveling Salesman Problem: A Computational Study; Princeton University Press, 2006; pp 1-58.
[61] Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101 10.1063/1.2408420
[62] Vallurupalli, P.; Chakrabarti, N.; Pomès, R.; Kay, L. E. Atomistic picture of conformational exchange in a T4 lysozyme cavity mutant: an experiment-guided molecular dynamics study. Chem. Sci. 2016, 7, 3602-3613, 10.1039/C5SC03886C
[63] Brotzakis, Z. F.; Parrinello, M. Enhanced sampling of protein conformational transitions via dynamically optimized collective variables. J. Chem. Theory Comput. 2019, 15, 1393-1398, 10.1021/acs.jctc.8b00827
[64] Tzeng, S. R.; Kalodimos, C. G. Allosteric inhibition through suppression of transient conformational states. Nat. Chem. Biol. 2013, 9, 462-465, 10.1038/nchembio.1250
[65] López, C. J.; Yang, Z. Y.; Altenbach, C.; Hubbell, W. L. Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E4306-E4315, 10.1073/pnas.1318754110
[66] Mondal, J.; Ahalawat, N.; Pandit, S.; Kay, L. E.; Vallurupalli, P. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. PLoS Comput. Biol. 2018, 14, e1006180 10.1371/journal.pcbi.1006180
[67] Feher, V. A.; Schiffer, J. M.; Mermelstein, D. J.; Mih, N.; Pierce, L. C. T. et al. Mechanisms for benzene dissociation through the excited state of t4 lysozyme l99a mutant. Biophys. J. 2019, 116, 205-214, 10.1016/j.bpj.2018.09.035
[68] Li, P. F.; Song, L. F.; Merz, K. M., Jr. Systematic parameterization of monovalent ions employing the nonbonded model. J. Chem. Theory Comput. 2015, 11, 1645-1657, 10.1021/ct500918t
[69] Huang, J.; MacKerell, A. D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135-2145, 10.1002/jcc.23354
[70] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684-3690, 10.1063/1.448118
[71] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593, 10.1063/1.470117
[72] Darden, T.; York, D.; Pedersen, L. J. Particle mesh Ewald: An N· log (N) method for Ewald sums in large systems. Chem. Phys. 1993, 98, 10089-10092, 10.1063/1.464397
[73] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463-1472, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[74] Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38, 10.1016/0263-7855(96)00018-5
[75] Liu, Y.; Zhu, J. X.; Guo, X. Q.; Huang, T. C.; Han, J. R.; Gao, J. J.; Xu, D.; Han, W. W. How oncogenic mutations activate human MAP kinase 1 (MEK1): a molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2019, 38, 3942-3958, 10.1080/07391102.2019.1686065
[76] Hanrahan, A. J.; Sylvester, B. E.; Chang, M. T.; Elzein, A.; Gao, J.; Han, W.; Liu, Y.; Xu, D.; Gao, S. P.; Gorelick, A. N.; Jones, A. M.; Kiliti, A. J.; Nissan, M. H.; Nimura, C. A.; Poteshman, A. N.; Yao, Z.; Gao, Y.; Hu, W.; Wise, H. C.; Gavrila, E. I.; Shoushtari, A. N.; Tiwari, S.; Viale, A.; Abdel-Wahab, O.; Merghoub, T.; Berger, M. F.; Rosen, N.; Taylor, B. S.; Solit, D. B. Leveraging systematic functional analysis to benchmark an in silico framework distinguishes driver from passenger MEK mutants in cancer. Cancer Res. 2020, 80, 4233-4243, 10.1158/0008-5472.CAN-20-0865
[77] Schwantes, C. R.; Pande, V. S. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 2013, 9, 2000-2009, 10.1021/ct300878a
[78] Pérez-Hernández, G.; Paul, F.; Giorgino, T.; De Fabritiis, G.; Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 2013, 139, 15102 10.1063/1.4811489
[79] Naritomi, Y.; Fuchigami, S. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis. J. Chem. Phys. 2013, 139, 215102 10.1063/1.4834695
[80] Faradjian, A. K.; Elber, R. Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 2004, 120, 10880-10889, 10.1063/1.1738640
[81] Vanden-Eijnden, E.; Venturoli, M. Markovian milestoning with Voronoi tessellations. J. Chem. Phys. 2009, 130, 194101 10.1063/1.3129843
[82] Ray, D.; Andricioaei, I. Weighted ensemble milestoning (WEM): A combined approach for rare event simulations. J. Chem. Phys. 2020, 152, 234114 10.1063/5.0008028
Citation statistics
Cited Times:6[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionArieh Warshel Institute for Computational Biology
School of Medicine
Corresponding AuthorZhu, Lizhe
1.Chinese Univ Hong Kong Shenzhen , Sch Life & Hlth Sci, Warshel Inst Computat Biol, Shenzhen 518172, Guangdong, Peoples R China
2.Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Anhui, Peoples R China
3.Chinese Univ Hong Kong Shenzhen , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
First Author AffilicationThe Chinese University of HongKong,Shenzhen
Corresponding Author AffilicationThe Chinese University of HongKong,Shenzhen
Recommended Citation
GB/T 7714
Xi, Kun,Hu, Zhenquan,Wu, Qianget al. Assessing the performance of Traveling-salesman based Automated Path Searching (TAPS) on complex biomolecular systems[J]. Journal of Chemical Theory and Computation,2021.
APA Xi, Kun, Hu, Zhenquan, Wu, Qiang, Wei, Meihan, Qian, Runtong, & Zhu, Lizhe. (2021). Assessing the performance of Traveling-salesman based Automated Path Searching (TAPS) on complex biomolecular systems. Journal of Chemical Theory and Computation.
MLA Xi, Kun,et al."Assessing the performance of Traveling-salesman based Automated Path Searching (TAPS) on complex biomolecular systems".Journal of Chemical Theory and Computation (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Xi, Kun]'s Articles
[Hu, Zhenquan]'s Articles
[Wu, Qiang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xi, Kun]'s Articles
[Hu, Zhenquan]'s Articles
[Wu, Qiang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xi, Kun]'s Articles
[Hu, Zhenquan]'s Articles
[Wu, Qiang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.