Details of Research Outputs

TitleJanus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging
Author (Name in English or Pinyin)
Wu, Qian1,2; Liu, Junkai3; Li, Youmei1,2; Lee, Michelle M. S.3; Hu, Lianrui3; Li, Ying1; Zhou, Panwang4; Wang, Dong1; Zhong, Ben3,5
Date Issued2021-10-06
Source PublicationMATTER
Indexed BySCIE
Firstlevel Discipline材料科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 4 期: 10 页: 3286-3300
[1] Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492 (2012), 234–238.
[2] Liu, Y., Li, C., Ren, Z., Yan, S., Bryce, M.R., All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater., 3, 2018, 18020.
[3] Zaumseil, J., Recent developments and novel applications of thin film, light-emitting transistors. Adv. Funct. Mater., 30, 2019, 1905269.
[4] Li, H., Shi, W., Song, J., Jang, H.-J., Dailey, J., Yu, J., Katz, H.E., Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 119 (2019), 3–35.
[5] Ning, Z., Fu, Y., Tian, H., Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ. Sci. 3 (2010), 1170–1181.
[6] Wadsworth, A., Moser, M., Marks, A., Little, M.S., Gasparini, N., Brabec, C.J., Baran, D., McCulloch, I., Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48 (2019), 1596–1625.
[7] Kwok, R.T.K., Leung, C.W.T., Lam, J.W.Y., Tang, B.Z., Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 44 (2015), 4228–4238.
[8] Wu, D., Sedgwick, A.C., Gunnlaugsson, T., Akkaya, E.U., Yoon, J., James, T.D., Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46 (2017), 7105–7123.
[9] Ostroverkhova, O., Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 116 (2016), 13279–13412.
[10] Roncali, J., Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97 (1997), 173–206.
[11] Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112 (2012), 2208–2267.
[12] Bronstein, H., Nielsen, C.B., Schroeder, B.C., McCulloch, I., The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4 (2020), 66–77.
[13] Bakulin, A.A., Rao, A., Pavelyev, V.G., Loosdrecht, P.H.M., Pshenichnikov, M.S., Niedzialek, D., et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335 (2012), 1340–1344.
[14] Savoie, B.M., Jackson, N.E., Chen, L.X., Marks, T.J., Ratner, M.A., Mesoscopic features of charge generation in organic semiconductors. Acc. Chem. Res. 47 (2014), 3385–3394.
[15] Hutchison, G.R., Ratner, M.A., Marks, T.J., Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J. Am. Chem. Soc. 127 (2005), 16866–16881.
[16] Deibel, C., Strobel, T., Dyakonov, V., Role of the charge transfer state in organic donor-acceptor solar cells. Adv. Mater. 22 (2010), 4097–4111.
[17] Chochos, C.L., Choulis, S.A., How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 36 (2011), 1326–1414.
[18] Zhang, W., Liu, Y., Yu, G., Heteroatom substituted organic/polymeric semiconductors and their applications in field-effect transistors. Adv. Mater. 26 (2014), 6898–6904.
[19] Hou, J., Inganas, O., Friend, R.H., Gao, F., Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17 (2018), 119–128.
[20] Zampetti, A., Minotto, A., Cacialli, F., Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater., 29, 2019, 1807623.
[21] Wu, Y., Zhu, W., Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 42 (2013), 2039–2058.
[22] Ying, L., Huang, F., Bazan, G.C., Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nat. Commun., 8, 2017, 14047.
[23] Cheng, P., Li, G., Zhan, X., Yang, Y., Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photon. 12 (2018), 131–142.
[24] Wan, X., Li, C., Zhang, M., Chen, Y., Acceptor-donor-acceptor type molecules for high performance organic photovoltaics—chemistry and mechanism. Chem. Soc. Rev. 49 (2020), 2828–2842.
[25] Xu, S., Duan, Y., Liu, B., Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv. Mater., 32, 2020, 1903530.
[26] Baker, W., Ollis, W.D., Poole, V.D., Cyclic meso-ionic compounds. 1. The structure of sydnones and related compounds. J. Chem. Soc., 1949, 307–314, 10.1039/JR9490000307.
[27] Baker, W., Ollis, W.D., Meso-ionic compounds. Q. Rev. Chem. Soc. 11 (1957), 15–29.
[28] Bernard, S., Audisio, D., Riomet, M., Bregant, S., Sallustrau, A., Plougastel, L., Decuypere, E., Gabillet, S., Kumar, R.A., Elyian, J., et al. Bioorthogonal click and release reaction of iminosydnones with cycloalkynes. Angew. Chem. Int. Ed. 56 (2017), 15612–15616.
[29] Ji, X., Pan, Z., Yu, B., De La Cruz, L.K., Zheng, Y., Ke, B., Wang, B., Click and release: bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev. 48 (2019), 1077–1094.
[30] Porte, K., Renoux, B., Peraudeau, E., Clarhaut, J., Eddhif, B., Poinot, P., Gravel, E., Doris, E., Wijkhuisen, A., Audisio, D., et al. Controlled release of a micelle payload via sequential enzymatic and bioorthogonal reactions in living systems. Angew. Chem. Int. Ed. 58 (2019), 6366–6370.
[31] Ollis, W.D., Ramsden, C.A., Meso-ionic compounds. Adv. Heterocycl. Chem. 19 (1976), 1–122.
[32] Marder, S.R., Cheng, L., Tiemann, B.G., Friedli, A.C., Blanchard-Desce, M., Perry, J.W., Skindhoj, J., Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity. Science 263 (1994), 511–514.
[33] Oliveira, M.B.D., Miller, J., Pereira, A.B., Galembeck, S.E., Moura, G.L.C.D., Simas, A.M., Mesoionic 2-N-cycloalkylamino-5-alkyl-1,3-dithiolium-4-thiolates. Phosphorus Sulfur Silicon Relat. Elem. 108 (1996), 75–84.
[34] Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Chen, H., Qiu, C., Kwok, H.S., Zhan, X., Liu, Y., Zhu, D., Tang, B.Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 2001, 1740–1741, 10.1039/b105159h.
[35] Weiss, J., Fluorescence of organic molecules. Nature 152 (1943), 176–178.
[36] Mei, J., Leung, N.L., Kwok, R.T., Lam, J.W., Tang, B.Z., Aggregation-induced emission: together we shine, united we soar!. Chem. Rev. 115 (2015), 11718–11940.
[37] Zhang, H., Zhao, Z., Turley, A.T., Wang, L., McGonigal, P.R., Tu, Y., Li, Y., Wang, Z., Kwok, R.T.K., Lam, J.W.Y., Tang, B.Z., Aggregate science: from structures to properties. Adv. Mater., 32, 2020, 2001457.
[38] Zhao, Z., Zhang, H., Lam, J.W.Y., Tang, B.Z., Aggregation-induced emission: new vistas at the aggregate level. Angew. Chem. Int. Ed. 59 (2020), 9888–9907.
[39] Nigam, S., Rutan, S., Principles and applications of solvatochromism. Appl. Spectrosc. 55 (2001), 362A–370A.
[40] Zhang, T., Jiang, Y., Niu, Y., Wang, D., Peng, Q., Shuai, Z., Aggregation effects on the optical emission of 1,1,2,3,4,5-hexaphenylsilole (HPS): a QM/MM study. J. Phys. Chem. A. 118 (2014), 9094–9104.
[41] Shuai, Z., Peng, Q., Organic light-emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology. Nat. Sci. Rev. 4 (2017), 224–239.
[42] Granovsky, A.A., Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys., 134, 2011, 214113.
[43] Vlaisavljevich, B., Shiozaki, T., Nuclear energy gradients for internally contracted complete active space second-order perturbation theory: multistate extensions. J. Chem. Theor. Comput. 12 (2016), 3781–3787.
[44] Zhou, P., Li, P., Zhao, Y., Han, K., Restriction of flip-flop motion as a mechanism for aggregation-induced emission. J. Phys. Chem. Lett. 10 (2019), 6929–6935.
[45] Chen, J., Law, C.C.W., Lam, J.W.Y., Dong, Y., Lo, S.M.F., Williams, I.D., Zhu, D., Tang, B.Z., Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 15 (2003), 1535–1546.
[46] Stannard, J.N., Horecker, B.L., The in vitro inhibition of cytochrome oxidase by azide and cyanide. J. Biol. Chem. 172 (1948), 599–608.
[47] Hitchcock, S.A., Pennington, L.D., Structure-brain exposure relationships. J. Med. Chem. 49 (2006), 7559–7583.
[48] Li, D., Edward, H.K., Guy, T.C., Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des. 15 (2009), 2184–2194.
[49] Zhang, C., Zhou, Z., Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat. Neurosci. 5 (2002), 425–430.
[50] Potts, K.T., Dery, M.O., Juzukonis, W.A., Carbon-carbon bond formation via intramolecular cycloadditions: use of the thiocarbonyl ylide dipole in anhydro-4-hydroxythiazolium hydroxides. J. Org. Chem. 54 (1989), 1077–1088.
Citation statistics
Cited Times:12[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorWang, Dong; Zhong, Ben
1.Shenzhen Univ, Ctr AIE Res, Shenzhen Key Lab Polymer Sci & Technol, Guangdong Res Ctr Interfacial Engn Funct Mat,Coll, Shenzhen 518060, Peoples R China
2.Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
3.Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong Branch Chinese Natl Engn Res Ctr Tissue, Inst Mol Funct Mat,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
4.Shandong Univ, Inst Mol Sci & Engn, Inst Frontier & Interdisciplinary Sci, Qingdao 266235, Peoples R China
5.Chinese Univ Hong Kong, Shenzhen Inst Aggregate Sci & Technol, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
Recommended Citation
GB/T 7714
Wu, Qian,Liu, Junkai,Li, Youmeiet al. Janus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging[J]. MATTER,2021.
APA Wu, Qian., Liu, Junkai., Li, Youmei., Lee, Michelle M. S., Hu, Lianrui., .. & Zhong, Ben. (2021). Janus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging. MATTER.
MLA Wu, Qian,et al."Janus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging".MATTER (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Wu, Qian]'s Articles
[Liu, Junkai]'s Articles
[Li, Youmei]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wu, Qian]'s Articles
[Liu, Junkai]'s Articles
[Li, Youmei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wu, Qian]'s Articles
[Liu, Junkai]'s Articles
[Li, Youmei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.