Details of Research Outputs

TitleMaltose-bis(hydroxymethyl)phenol (MBPs) and Maltosetris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability
Author (Name in English or Pinyin)
Ehsan, Muhammad7,8; Wang, Haoqing1; Cecchetti, Cristina2,3; Mortensen, Jonas S.4; Du, Yang1,5; Hariharan, Parameswaran6; Nygaard, Andreas4; Lee, Ho Jin7; Ghani, Lubna7; Guan, Lan6; Loland, Claus J.4; Byrne, Bernadette2; Kobilka, Brian K.1; Chae, Pil Seok7
Date Issued2021-09-17
Source PublicationACS Chemical Biology
ISSN1554-8929
DOI10.1021/acschembio.1c00578
Indexed BySCIE
Firstlevel Discipline生物学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 16 期: 9 页: 1779-1790
References
[1] Rask-Andersen, M.; Almén, M. S.; Schiöth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discovery 2011, 10, 579-590, 10.1038/nrd3478
[2] Hauser, A. S.; Attwood, M. M.; Rask-Andersen, M.; Schiöth, H. B.; Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discovery 2017, 16, 829-842, 10.1038/nrd.2017.178
[3] Zhou, H. X.; Cross, T. A. Influences of membrane mimetic environments on membrane protein structures. Annu. Rev. Biophys. 2013, 42, 361-392, 10.1146/annurev-biophys-083012-130326
[4] Kim, H. J.; Howell, S. C.; Van Horn, W. D.; Jeon, Y. H.; Sanders, C. R. Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 335-360, 10.1016/j.pnmrs.2009.07.002
[5] Raschle, T.; Hiller, S.; Etzkorn, M.; Wagner, G. Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 2010, 20, 471-479, 10.1016/j.sbi.2010.05.006
[6] Daum, B.; Vonck, J.; Bellack, A.; Chaudhury, P.; Reichelt, R.; Albers, S. V.; Rachel, R.; Kühlbrandt, W. Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery. eLife 2017, 6, e27470 10.7554/eLife.27470
[7] Goldie, K. N.; Abeyrathne, P.; Kebbel, F.; Chami, M.; Ringler, P.; Stahlberg, H. Cryo-electron microscopy of membrane proteins. In Electron Microscopy; Humana Press: Totowa, NJ, 2014; pp 325-341.
[8] Celej, M. S.; Montich, G. G.; Fidelio, G. D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. 2003, 12, 1496-1506, 10.1110/ps.0240003
[9] Privé, G. G. Detergents for the stabilization and crystallization of membrane proteins. Methods 2007, 41, 388-397, 10.1016/j.ymeth.2007.01.007
[10] Garavito, R. M.; Ferguson-Miller, S. Detergents as tools in membrane biochemistry. J. Biol. Chem. 2001, 276, 32403-32406, 10.1074/jbc.R100031200
[11] Tribet, C.; Audebert, R.; Popot, J. L. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 15047-15050, 10.1073/pnas.93.26.15047
[12] Dörr, J. M.; Scheidelaar, S.; Koorengevel, M. C.; Dominguez, J. J.; Schäfer, M.; van Walree, C. A.; Killian, J. A. The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 2016, 45, 3-21, 10.1007/s00249-015-1093-y
[13] Ujwal, R.; Bowie, J. U. Crystallizing membrane proteins using lipidic bicelles. Methods 2011, 55, 337-341, 10.1016/j.ymeth.2011.09.020
[14] Denisov, I. G.; Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 2016, 23, 481-486, 10.1038/nsmb.3195
[15] Caffrey, M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr., Sect. F: Struct. Biol. Commun. 2015, 71, 3-18, 10.1107/S2053230X14026843
[16] McGregor, C. L.; Chen, L.; Pomroy, N. C.; Hwang, P.; Go, S.; Chakrabartty, A.; Privé, G. G. Lipopeptide detergents designed for the structural study of membrane proteins. Nat. Biotechnol. 2003, 21, 171-176, 10.1038/nbt776
[17] Tao, H.; Lee, S. C.; Moeller, A.; Roy, R. S.; Siu, F. Y.; Zimmermann, J.; Stevens, R. C.; Potter, C. S.; Carragher, B.; Zhang, Q. Engineered nanostructured β-sheet peptides protect membrane proteins. Nat. Methods 2013, 10, 759-761, 10.1038/nmeth.2533
[18] Frauenfeld, J.; Loving, R.; Armache, J.-P.; Sonnen, A. F-P; Guettou, F.; Moberg, P.; Zhu, L.; Jegerschold, C.; Flayhan, A.; Briggs, J. A G; Garoff, H.; Low, C.; Cheng, Y.; Nordlund, P. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 2016, 13, 345-351, 10.1038/nmeth.3801
[19] White, S. Membrane proteins of known 3D structure. http://blanco.biomol.uci.edu/mpstruc/.
[20] Chae, P. S.; Rana, R. R.; Gotfryd, K.; Rasmussen, S. G. F.; Kruse, A. C.; Cho, K. H.; Capaldi, S.; Carlsson, E.; Kobilka, B.; Loland, C. J.; Gether, U.; Banerjee, S.; Byrne, B.; Lee, J. K.; Gellman, S. H. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study. Chem. Commun. 2013, 49, 2287-2289, 10.1039/C2CC36844G
[21] Kellosalo, J.; Kajander, T.; Kogan, K.; Pokharel, K.; Goldman, A. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012, 337, 473-476, 10.1126/science.1222505
[22] Frick, A.; Eriksson, U. K.; de Mattia, F.; Oberg, F.; Hedfalk, K.; Neutze, R.; de Grip, W. J.; Deen, P. M. T.; Tornroth-Horsefield, S. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 6305-6310, 10.1073/pnas.1321406111
[23] Hauer, F.; Gerle, C.; Fischer, N.; Oshima, A.; Shinzawa-Itoh, K.; Shimada, S.; Yokoyama, K.; Fujiyoshi, Y.; Stark, H. GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 2015, 23, 1769-1775, 10.1016/j.str.2015.06.029
[24] Yin, J.; Mobarec, J. C.; Kolb, P.; Rosenbaum, D. M. Crystal structure of the human OX 2 orexin receptor bound to the insomnia drug suvorexant. Nature 2015, 519, 247-250, 10.1038/nature14035
[25] Kang, Y.; Zhou, X. E.; Gao, X.; He, Y.; Liu, W.; Ishchenko, A.; Barty, A.; White, T. A.; Yefanov, O.; Han, G. W.; Xu, Q.; de Waal, P. W.; Ke, J.; Tan, M. H. E.; Zhang, C.; Moeller, A.; West, G. M.; Pascal, B. D.; Van Eps, N.; Caro, L. N.; Vishnivetskiy, S. A.; Lee, R. J.; Suino-Powell, K. M.; Gu, X.; Pal, K.; Ma, J.; Zhi, X.; Boutet, S.; Williams, G. J.; Messerschmidt, M.; Gati, C.; Zatsepin, N. A.; Wang, D.; James, D.; Basu, S.; Roy-Chowdhury, S.; Conrad, C. E.; Coe, J.; Liu, H.; Lisova, S.; Kupitz, C.; Grotjohann, I.; Fromme, R.; Jiang, Y.; Tan, M.; Yang, H.; Li, J.; Wang, M.; Zheng, Z.; Li, D.; Howe, N.; Zhao, Y.; Standfuss, J.; Diederichs, K.; Dong, Y.; Potter, C. S.; Carragher, B.; Caffrey, M.; Jiang, H.; Chapman, H. N.; Spence, J. C. H.; Fromme, P.; Weierstall, U.; Ernst, O. P.; Katritch, V.; Gurevich, V. V.; Griffin, P. R.; Hubbell, W. L.; Stevens, R. C.; Cherezov, V.; Melcher, K.; Xu, H. E. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 2015, 523, 561-567, 10.1038/nature14656
[26] Perez, C.; Gerber, S.; Boilevin, J.; Bucher, M.; Darbre, T.; Aebi, M.; Reymond, J.-L.; Locher, K. P. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 2015, 524, 433-438, 10.1038/nature14953
[27] Dong, Y. Y.; Pike, A. C. W.; Mackenzie, A.; McClenaghan, C.; Aryal, P.; Dong, L.; Quigley, A.; Grieben, M.; Goubin, S.; Mukhopadhyay, S.; Ruda, G. F.; Clausen, M. V.; Cao, L.; Brennan, P. E.; Burgess-Brown, N. A.; Sansom, M. S. P.; Tucker, S. J.; Carpenter, E. P. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 2015, 347, 1256-1259, 10.1126/science.1261512
[28] Paulsen, C. E.; Armache, J. P.; Gao, Y.; Cheng, Y.; Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015, 520, 511-517, 10.1038/nature14367
[29] Schmidt, H. R.; Zheng, S.; Gurpinar, E.; Koehl, A.; Manglik, A.; Kruse, A. C. Crystal structure of the human σ 1 receptor. Nature 2016, 532, 527-530, 10.1038/nature17391
[30] Rosenbaum, D. M.; Zhang, C.; Lyons, J. A.; Holl, R.; Aragao, D.; Arlow, D. H.; Rasmussen, S. G. F.; Choi, H.-J.; DeVree, B. T.; Sunahara, R. K.; Chae, P. S.; Gellman, S. H.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Caffrey, M.; Gmeiner, P.; Kobilka, B. K. Structure and function of an irreversible agonist-β2adrenoceptor complex. Nature 2011, 469, 236, 10.1038/nature09665
[31] Haga, K.; Kruse, A. C.; Asada, H.; Yurugi-Kobayashi, T.; Shiroishi, M.; Zhang, C.; Weis, W. I.; Okada, T.; Kobilka, B. K.; Haga, T.; Kobayashi, T. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 2012, 482, 547-551, 10.1038/nature10753
[32] Kruse, A. C.; Ring, A. M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hubner, H.; Pardon, E.; Valant, C.; Sexton, P. M.; Christopoulos, A.; Felder, C. C.; Gmeiner, P.; Steyaert, J.; Weis, W. I.; Garcia, K. C.; Wess, J.; Kobilka, B. K. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 2013, 504, 101-106, 10.1038/nature12735
[33] Suzuki, H.; Nishizawa, T.; Tani, K.; Yamazaki, Y.; Tamura, A.; Ishitani, R.; Dohmae, N.; Tsukita, S.; Nureki, O.; Fujiyoshi, Y. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 2014, 344, 304-307, 10.1126/science.1248571
[34] Kane Dickson, V.; Pedi, L.; Long, S. B. Structure and insights into the function of a Ca2+-activated Cl-channel. Nature 2014, 516, 213-218, 10.1038/nature13913
[35] Hauer, F.; Gerle, C.; Fischer, N.; Oshima, A.; Shinzawa-Itoh, K.; Shimada, S.; Yokoyama, K.; Fujiyoshi, Y.; Stark, H. GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 2015, 23, 1769-1775, 10.1016/j.str.2015.06.029
[36] Yin, J.; Mobarec, J. C.; Kolb, P.; Rosenbaum, D. M. Crystal structure of the human OX 2 orexin receptor bound to the insomnia drug suvorexant. Nature 2015, 519, 247-250, 10.1038/nature14035
[37] Kang, Y.; Zhou, X. E.; Gao, X.; He, Y.; Liu, W.; Ishchenko, A.; Barty, A.; White, T. A.; Yefanov, O.; Han, G. W.; Xu, Q.; de Waal, P. W.; Ke, J.; Tan, M. H. E.; Zhang, C.; Moeller, A.; West, G. M.; Pascal, B. D.; Van Eps, N.; Caro, L. N.; Vishnivetskiy, S. A.; Lee, R. J.; Suino-Powell, K. M.; Gu, X.; Pal, K.; Ma, J.; Zhi, X.; Boutet, S.; Williams, G. J.; Messerschmidt, M.; Gati, C.; Zatsepin, N. A.; Wang, D.; James, D.; Basu, S.; Roy-Chowdhury, S.; Conrad, C. E.; Coe, J.; Liu, H.; Lisova, S.; Kupitz, C.; Grotjohann, I.; Fromme, R.; Jiang, Y.; Tan, M.; Yang, H.; Li, J.; Wang, M.; Zheng, Z.; Li, D.; Howe, N.; Zhao, Y.; Standfuss, J.; Diederichs, K.; Dong, Y.; Potter, C. S.; Carragher, B.; Caffrey, M.; Jiang, H.; Chapman, H. N.; Spence, J. C. H.; Fromme, P.; Weierstall, U.; Ernst, O. P.; Katritch, V.; Gurevich, V. V.; Griffin, P. R.; Hubbell, W. L.; Stevens, R. C.; Cherezov, V.; Melcher, K.; Xu, H. E. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 2015, 523, 561-567, 10.1038/nature14656
[38] Perez, C.; Gerber, S.; Boilevin, J.; Bucher, M.; Darbre, T.; Aebi, M.; Reymond, J.-L.; Locher, K. P. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 2015, 524, 433-438, 10.1038/nature14953
[39] Taniguchi, R.; Kato, H. E.; Font, J.; Deshpande, C. N.; Wada, M.; Ito, K.; Ishitani, R.; Jormakka, M.; Nureki, O. Outward-and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat. Commun. 2015, 6, 8545, 10.1038/ncomms9545
[40] Dong, Y. Y.; Pike, A. C. W.; Mackenzie, A.; McClenaghan, C.; Aryal, P.; Dong, L.; Quigley, A.; Grieben, M.; Goubin, S.; Mukhopadhyay, S.; Ruda, G. F.; Clausen, M. V.; Cao, L.; Brennan, P. E.; Burgess-Brown, N. A.; Sansom, M. S. P.; Tucker, S. J.; Carpenter, E. P. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 2015, 347, 1256-1259, 10.1126/science.1261512
[41] Paulsen, C. E.; Armache, J. P.; Gao, Y.; Cheng, Y.; Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 2015, 520, 511-517, 10.1038/nature14367
[42] Schmidt, H. R.; Zheng, S.; Gurpinar, E.; Koehl, A.; Manglik, A.; Kruse, A. C. Crystal structure of the human σ 1 receptor. Nature 2016, 532, 527-530, 10.1038/nature17391
[43] Liang, Y.-L.; Khoshouei, M.; Radjainia, M.; Zhang, Y.; Glukhova, A.; Tarrasch, J.; Thal, D. M.; Furness, S. G. B.; Christopoulos, G.; Coudrat, T.; Danev, R.; Baumeister, W.; Miller, L. J.; Christopoulos, A.; Kobilka, B. K.; Wootten, D.; Skiniotis, G.; Sexton, P. M. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 2017, 546, 118-123, 10.1038/nature22327
[44] James, Z. M.; Borst, A. J.; Haitin, Y.; Frenz, B.; DiMaio, F.; Zagotta, W. N.; Veesler, D. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4430-4435, 10.1073/pnas.1700248114
[45] Glukhova, A.; Thal, D. M.; Nguyen, A. T.; Vecchio, E. A.; Jörg, M.; Scammells, P. J.; May, L. T.; Sexton, P. M.; Christopoulos, A. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 2017, 168, 867-877, 10.1016/j.cell.2017.01.042
[46] Tanaka, Y.; Iwaki, S.; Tsukazaki, T. Crystal structure of a plant multidrug and toxic compound extrusion family protein. Structure 2017, 25, 1455-1460, 10.1016/j.str.2017.07.009
[47] Chae, P. S.; Cho, K. H.; Wander, M. J.; Bae, H. E.; Gellman, S. H.; Laible, P. D. Hydrophobic variants of ganglio-tripod amphiphiles for membrane protein manipulation. Biochim. Biophys. Acta, Biomembr. 2014, 1838, 278-286, 10.1016/j.bbamem.2013.09.011
[48] Frotscher, E.; Danielczak, B.; Vargas, C.; Meister, A.; Durand, G.; Keller, S. A Fluorinated Detergent for Membrane Protein Applications. Angew. Chem., Int. Ed. 2015, 54, 5069-5073, 10.1002/anie.201412359
[49] Hussain, H.; Du, Y.; Scull, N. J.; Mortensen, J. S.; Tarrasch, J.; Bae, H. E.; Loland, C. J.; Byrne, B.; Kobilka, B. K.; Chae, P. S. Accessible mannitol-based amphiphiles (MNAs) for membrane protein solubilisation and stabilisation. Chem.-Eur. J. 2016, 22, 7068-7073, 10.1002/chem.201600533
[50] Cho, K. H.; Ribeiro, O.; Du, Y.; Tikhonova, E.; Mortensen, J. S.; Markham, K.; Hariharan, P.; Loland, C. J.; Guan, L.; Kobilka, B. K.; Byrne, B.; Chae, P. S. Mesitylene-cored glucoside amphiphiles (MGAs) for membrane protein studies: importance of alkyl chain density in detergent efficacy. Chem.-Eur. J. 2016, 22, 18833-18839, 10.1002/chem.201603338
[51] Das, M.; Du, Y.; Ribeiro, O.; Hariharan, P.; Mortensen, J. S.; Patra, D.; Skiniotis, G.; Loland, C. J.; Guan, L.; Kobilka, B. K.; Byrne, B.; Chae, P. S. Conformationally preorganized diastereomeric norbornane-based maltosides for membrane protein study: Implications of detergent kink for micellar properties. J. Am. Chem. Soc. 2017, 139, 3072-3081, 10.1021/jacs.6b11997
[52] Hussain, H.; Du, Y.; Tikhonova, E.; Mortensen, J. S.; Ribeiro, O.; Santillan, C.; Das, M.; Ehsan, M.; Loland, C. J.; Guan, L.; Kobilka, B. K.; Byrne, B.; Chae, P. S. Resorcinarene-Based Facial Glycosides: Implication of Detergent Flexibility on Membrane Protein Stability. Chem.-Eur. J. 2017, 23, 6724-6729, 10.1002/chem.201605016
[53] Sadaf, A.; Ramos, M.; Mortensen, J. S.; Du, Y.; Bae, H. E.; Munk, C. F.; Hariharan, P.; Byrne, B.; Kobilka, B. K.; Loland, C. J.; Guan, L.; Chae, P. S. Conformationally Restricted Monosaccharide-Cored Glycoside Amphiphiles: The Effect of Detergent Headgroup Variation on Membrane Protein Stability. ACS Chem. Biol. 2019, 14, 1717-1726, 10.1021/acschembio.9b00166
[54] Ghani, L.; Munk, C. F.; Zhang, X.; Katsube, S.; Du, Y.; Cecchetti, C.; Huang, W.; Bae, H. E.; Saouros, S.; Ehsan, M.; Guan, L.; Liu, X.; Loland, C. J.; Kobilka, B. K.; Byrne, B.; Chae, P. S. 1,3,5-triazine-cored maltoside amphiphiles for membrane protein extraction and stabilization. J. Am. Chem. Soc. 2019, 141, 19677-49687, 10.1021/jacs.9b07883
[55] Chae, P. S.; Rasmussen, S. G.; Rana, R. R.; Gotfryd, K.; Kruse, A. C.; Manglik, A.; Cho, K. H.; Nurva, S.; Gether, U.; Guan, L.; Loland, C. J.; Byrne, B.; Kobilka, B. K.; Gellman, S. H. A new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins. Chem.-Eur. J. 2012, 18, 9485-9490, 10.1002/chem.201200069
[56] Ehsan, M.; Kumar, A.; Mortensen, J. S.; Du, Y.; Hariharan, P.; Kumar, K. K.; Ha, B.; Byrne, B.; Guan, L.; Kobilka, B. K.; Loland, C. J.; Chae, P. S. Self-Assembly Behaviors of a Penta-Phenylene Maltoside and Its Application for Membrane Protein Study. Chem.-Asian J. 2019, 14, 1926-1931, 10.1002/asia.201900224
[57] Ehsan, M.; Du, Y.; Scull, N. J.; Tikhonova, E.; Tarrasch, J.; Mortensen, J. S.; Loland, C. J.; Skiniotis, G.; Guan, L.; Byrne, B.; Kobilka, B. K.; Chae, P. S. Highly branched pentasaccharide-bearing amphiphiles for membrane protein studies. J. Am. Chem. Soc. 2016, 138, 3789-3796, 10.1021/jacs.5b13233
[58] Sadaf, A.; Du, Y.; Santillan, C.; Mortensen, J. S.; Molist, I.; Seven, A. B.; Hariharan, P.; Skiniotis, G.; Loland, C. J.; Kobilka, B. K.; Guan, L.; Byrne, B.; Chae, P. S. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chem. Sci. 2017, 8, 8315-8324, 10.1039/C7SC03700G
[59] Ehsan, M.; Du, Y.; Molist, I.; Seven, A. B.; Hariharan, P.; Mortensen, J. S.; Ghani, L.; Loland, C. J.; Skiniotis, G.; Guan, L.; Byrne, B.; Kobilka, B. K.; Chae, P. S. Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Org. Biomol. Chem. 2018, 16, 2489-2498, 10.1039/C8OB00270C
[60] Ehsan, M.; Du, Y.; Mortensen, J. S.; Hariharan, P.; Qu, Q.; Ghani, L.; Das, M.; Grethen, A.; Byrne, B.; Skiniotis, G.; Keller, S.; Loland, C. J.; Guan, L.; Kobilka, B. K.; Chae, P. S. Self-assembly behaviors and application of terphenyl-cored trimaltosides for membrane protein study: Impact of detergent hydrophobic group geometry on protein stability. Chem.-Eur. J. 2019, 25, 11545-11554, 10.1002/chem.201902468
[61] Bae, H. E.; Du, Y.; Hariharan, P.; Mortensen, J. S.; Kumar, K. K.; Ha, B.; Das, M.; Lee, H. S.; Loland, C. J.; Guan, L.; Kobilka, B. K.; Chae, P. S. Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: effect of detergent asymmetricity on protein stability. Chem. Sci. 2019, 10, 1107-1116, 10.1039/C8SC02560F
[62] Bae, H. E.; Cecchetti, C.; Du, Y.; Katsube, S.; Mortensen, J. S.; Huang, W.; Rehan, S.; Lee, H. J.; Loland, C. J.; Guan, L.; Kobilka, B. K.; Byrne, B.; Chae, P. S. Pendant-bearing glucose-neopentyl glycol (P-GNG) amphiphiles for membrane protein manipulation: Importance of detergent pendant chain for protein stabilization. Acta Biomater. 2020, 112, 250-261, 10.1016/j.actbio.2020.06.001
[63] Chae, P. S.; Kruse, A. C.; Gotfryd, K.; Rana, R. R.; Cho, K. H.; Rasmussen, S. G.; Bae, H. E.; Chandra, R.; Gether, U.; Guan, L.; Kobilka, B. K.; Loland, C. J.; Byrne, B.; Gellman, S. H. Novel tripod amphiphiles for membrane protein analysis. Chem.-Eur. J. 2013, 19, 15645-15651, 10.1002/chem.201301423
[64] Chattopadhyay, A.; London, E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal. Biochem. 1984, 139, 408-412, 10.1016/0003-2697(84)90026-5
[65] Wu, S.; Shi, F.; Zhang, Q.; Bubeck, C. Stable hydrogen-bonding complexes of poly (4-vinylpyridine) and polydiacetylenes for photolithography and sensing. Macromolecules 2009, 42, 4110-4117, 10.1021/ma9001929
[66] Thurtle-Schmidt, B. H.; Stroud, R. M. Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 10542-10546, 10.1073/pnas.1612603113
[67] Hanson, M. A.; Cherezov, V.; Griffith, M. T.; Roth, C. B.; Jaakola, V. P.; Chien, E. Y.; Velasquez, J.; Kuhn, P.; Stevens, R. C. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 2008, 16, 897-905, 10.1016/j.str.2008.05.001
[68] Guan, L.; Nurva, S.; Ankeshwarapu, S. P. Mechanism of melibiose/cation symport of the melibiose permease of Salmonella typhimurium. J. Biol. Chem. 2011, 286, 6367-6374, 10.1074/jbc.M110.206227
[69] Ethayathulla, A. S.; Yousef, M. S.; Amin, A.; Leblanc, G.; Kaback, H. R.; Guan, L. Structure-based mechanism for Na+/melibiose symport by MelB. Nat. Commun. 2014, 5, 3009-3020, 10.1038/ncomms4009
[70] Deckert, G.; Warren, P. V.; Gaasterland, T.; Young, W. G.; Lenox, A. L.; Graham, D. E.; Overbeek, R.; Snead, M. A.; Keller, M.; Aujay, M.; Huber, R.; Feldman, R. A.; Short, J. M.; Olsen, G. J.; Swanson, R. V. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 1998, 392, 353-358, 10.1038/32831
[71] Quick, M.; Javitch, J. A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3603-3608, 10.1073/pnas.0609573104
[72] Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 2007, 318, 1266-1273, 10.1126/science.1150609
[73] Yao, X.; Parnot, C.; Deupi, X.; Ratnala, V. R.; Swaminath, G.; Farrens, D.; Kobilka, B. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nat. Chem. Biol. 2006, 2, 417-422, 10.1038/nchembio801
[74] Swaminath, G.; Steenhuis, J.; Kobilka, B.; Lee, T. W. Allosteric modulation of β2-adrenergic receptor by Zn2+. Mol. Pharmacol. 2002, 61, 65-72, 10.1124/mol.61.1.65
[75] Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F. S.; Mathiesen, J. M.; Sunahara, R. K.; Pardo, L.; Weis, W. I.; Kobilka, B. K.; Granier, S. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 2012, 485, 321-326, 10.1038/nature10954
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/2335
CollectionSchool of Medicine
Corresponding AuthorEhsan, Muhammad; Chae, Pil Seok
Affiliation
1.Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
2.Imperial Coll London, Dept Life Sci, London SW7 2AZ, England
3.IEO European Inst Oncol IRCCS, Dept Expt Oncol, Milan, Italy
4.Univ Copenhagen, Dept Neurosci, DK-2200 Copenhagen, Denmark
5.Chinese Univ Hong Kong , Sch Life & Hlth Sci, 2001 Longxiang Ave, Shenzhen 518172, Guangdong, Peoples R China
6.Texas Tech Univ, Ctr Membrane Prot Res, Sch Med, Dept Cell Physiol & Mol Biophys,Hlth Sci Ctr, Lubbock, TX 79430 USA
7.Hanyang Univ, Dept Bionano Engn, Ctr Bionano Intelligence Educ & Res, Ansan 15588, South Korea
8.Mirpur Univ Sci & Technol MUST, Dept Chem, Mirpur 10250, Ajk, Pakistan
Recommended Citation
GB/T 7714
Ehsan, Muhammad,Wang, Haoqing,Cecchetti, Cristinaet al. Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltosetris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability[J]. ACS Chemical Biology,2021.
APA Ehsan, Muhammad., Wang, Haoqing., Cecchetti, Cristina., Mortensen, Jonas S., Du, Yang., .. & Chae, Pil Seok. (2021). Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltosetris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability. ACS Chemical Biology.
MLA Ehsan, Muhammad,et al."Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltosetris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability".ACS Chemical Biology (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Ehsan, Muhammad]'s Articles
[Wang, Haoqing]'s Articles
[Cecchetti, Cristina]'s Articles
Baidu academic
Similar articles in Baidu academic
[Ehsan, Muhammad]'s Articles
[Wang, Haoqing]'s Articles
[Cecchetti, Cristina]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Ehsan, Muhammad]'s Articles
[Wang, Haoqing]'s Articles
[Cecchetti, Cristina]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.