Details of Research Outputs

TitleIn Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO2 Nanorod Photoanodes
Author (Name in English or Pinyin)
Zhu, Heng1,2; Xiao, Shuyu3; Tu, Wenguang1; Yan, Shicheng4; He, Tingchao3; Zhu, Xi1; Yao, Yingfang1,4; Zhou, Yong1,5; Zou, Zhigang1,5
Date Issued2021-11-02
Source PublicationJournal of Physical Chemistry Letters
Indexed BySCIE
Firstlevel Discipline材料科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 12 期: 44 页: 10815-10822
[1] Pendlebury, S. R.; Cowan, A. J.; Barroso, M.; Sivula, K.; Ye, J.; Grätzel, M.; Klug, D. R.; Tang, J.; Durrant, J. R. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 2012, 5, 6304-6312, 10.1039/C1EE02567H
[2] Pendlebury, S. R.; Wang, X.; Le Formal, F.; Cornuz, M.; Kafizas, A.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 2014, 136, 9854-9857, 10.1021/ja504473e
[3] Corby, S.; Rao, R. R.; Steier, L.; Durrant, J. R. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 2021, 1, 10.1038/s41578-021-00343-7
[4] Yamada, Y.; Kanemitsu, Y. Determination of electron and hole lifetimes of rutile and anatase TiO2single crystals. Appl. Phys. Lett. 2012, 101, 133907, 10.1063/1.4754831
[5] Zheng, X.; Hopper, T. R.; Gorodetsky, A.; Maimaris, M.; Xu, W.; Martin, B. A. A.; Frost, J. M.; Bakulin, A. A. Multipulse terahertz spectroscopy unveils hot polaron photoconductivity dynamics in metal-halide perovskites. J. Phys. Chem. Lett. 2021, 12, 8732-8739, 10.1021/acs.jpclett.1c02102
[6] Jin, W.; Kim, H. H.; Ye, Z.; Ye, G.; Rojas, L.; Luo, X.; Yang, B.; Yin, F.; Horng, J.; Tian, S. et al. Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3. Nat. Commun. 2020, 11, 4780, 10.1038/s41467-020-18627-x
[7] Ghosh, R.; Spano, F. C. Excitons and polarons in organic materials. Acc. Chem. Res. 2020, 53, 2201-2211, 10.1021/acs.accounts.0c00349
[8] Franchini, C.; Reticcioli, M.; Setvin, M.; Diebold, U. Polarons in materials. Nat. Rev. Mater. 2021, 6, 560-586, 10.1038/s41578-021-00289-w
[9] Liu, Q.; He, J.; Yao, T.; Sun, Z.; Cheng, W.; He, S.; Xie, Y.; Peng, Y.; Cheng, H.; Sun, Y. et al. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 2014, 5, 5122, 10.1038/ncomms6122
[10] Du, C.; Yang, X.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. Hematite-based water splitting with low turn-on voltages. Angew. Chem., Int. Ed. 2013, 52, 12692-12695, 10.1002/anie.201306263
[11] Yao, L.; Liu, Y.; Cho, H.-H.; Xia, M.; Sekar, A.; Primera Darwich, B.; Wells, R. A.; Yum, J.-H.; Ren, D.; Grätzel, M. et al. A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion. Energy Environ. Sci. 2021, 14, 3141-3151, 10.1039/D1EE00152C
[12] Zhao, Y.; Yang, K. R.; Wang, Z.; Yan, X.; Cao, S.; Ye, Y.; Dong, Q.; Zhang, X.; Thorne, J. E.; Jin, L. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 2902-2907, 10.1073/pnas.1722137115
[13] Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of photogenerated holes in surface modified α-Fe2O3photoanodes for solar water splitting. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15640-15645, 10.1073/pnas.1118326109
[14] Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011, 2, 737-743, 10.1039/C0SC00578A
[15] Wang, S.; Chen, P.; Yun, J.-H.; Hu, Y.; Wang, L. An electrochemically treated BiVO4photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500-8504, 10.1002/anie.201703491
[16] Zandi, O.; Hamann, T. W. Enhanced water splitting efficiency through selective surface state removal. J. Phys. Chem. Lett. 2014, 5, 1522-1526, 10.1021/jz500535a
[17] Zhu, H.; Zhao, M.; Zhou, J.; Li, W.; Wang, H.; Xu, Z.; Lu, L.; Pei, L.; Shi, Z.; Yan, S. et al. Surface states as electron transfer pathway enhanced charge separation in TiO2nanotube water splitting photoanodes. Appl. Catal., B 2018, 234, 100-108, 10.1016/j.apcatb.2018.04.040
[18] Zhang, L.; Chu, W.; Zhao, C.; Zheng, Q.; Prezhdo, O. V.; Zhao, J. Dynamics of photoexcited small polarons in transition-metal oxides. J. Phys. Chem. Lett. 2021, 12, 2191-2198, 10.1021/acs.jpclett.1c00003
[19] Yang, Q.; Zhu, H.; Hou, Y.; Liu, D.; Tang, H.; Liu, D.; Zhang, W.; Yan, S.; Zou, Z. Surface polaron states on single-crystal rutile TiO2nanorod arrays enhancing charge separation and transfer. Dalton Trans. 2020, 49, 15054-15060, 10.1039/D0DT03068F
[20] Setvin, M.; Franchini, C.; Hao, X.; Schmid, M.; Janotti, A.; Kaltak, M.; van de Walle, C. G.; Kresse, G.; Diebold, U. Direct view at excess electrons in TiO2rutile and anatase. Phys. Rev. Lett. 2014, 113, 086402, 10.1103/PhysRevLett.113.086402
[21] Zhu, Y.-N.; Teobaldi, G.; Liu, L.-M. Water-hydrogen-polaron coupling at anatase TiO2(101) surfaces: A hybrid density functional theory study. J. Phys. Chem. Lett. 2020, 11, 4317-4325, 10.1021/acs.jpclett.0c00917
[22] Zhu, H.; Yang, Q.; Liu, D.; Liu, D.; Zhang, W.; Chu, Z.; Wang, X.; Yan, S.; Li, Z.; Zou, Z. Polaron states as a massive electron-transfer pathway at heterojunction interface. J. Phys. Chem. Lett. 2020, 11, 9184-9194, 10.1021/acs.jpclett.0c02291
[23] Deskins, N. A.; Rousseau, R.; Dupuis, M. Localized electronic states from surface hydroxyls and polarons in TiO2(110). J. Phys. Chem. C 2009, 113, 14583-14586, 10.1021/jp9037655
[24] Cowan, A. J.; Tang, J.; Leng, W.; Durrant, J. R.; Klug, D. R. Water splitting by nanocrystalline TiO2in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 2010, 114, 4208-4214, 10.1021/jp909993w
[25] Pendlebury, S. R.; Barroso, M.; Cowan, A. J.; Sivula, K.; Tang, J.; Grätzel, M.; Klug, D.; Durrant, J. R. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 2011, 47, 716-718, 10.1039/C0CC03627G
[26] Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 2013, 4, 2724, 10.1039/c3sc50496d
[27] Knowles, K. E.; Koch, M. D.; Shelton, J. L. Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: Spectroelectrochemistry, microscopy, and identification of thermal contributions. J. Mater. Chem. C 2018, 6, 11853-11867, 10.1039/C8TC02977F
[28] Le Formal, F.; Pendlebury, S. R.; Cornuz, M.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. Back electron-hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 2014, 136, 2564-2574, 10.1021/ja412058x
[29] Murthy, D. H. K.; Matsuzaki, H.; Wang, Z.; Suzuki, Y.; Hisatomi, T.; Seki, K.; Inoue, Y.; Domen, K.; Furube, A. Origin of the overall water splitting activity of Ta3N5revealed by ultrafast transient absorption spectroscopy. Chem. Sci. 2019, 10, 5353-5362, 10.1039/C9SC00217K
[30] Utterback, J. K.; Grennell, A. N.; Wilker, M. B.; Pearce, O. M.; Eaves, J. D.; Dukovic, G. Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nat. Chem. 2016, 8, 1061-1066, 10.1038/nchem.2566
[31] Miao, T. J.; Tang, J. Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J. Chem. Phys. 2020, 152, 194201, 10.1063/5.0008537
[32] Bozal-Ginesta, C.; Mesa, C. A.; Eisenschmidt, A.; Francàs, L.; Shankar, R. B.; Antón-García, D.; Warnan, J.; Willkomm, J.; Reynal, A.; Reisner, E. et al. Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO2. Chem. Sci. 2021, 12, 946-959, 10.1039/D0SC04344C
[33] Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M. Dynamics of efficient electron-hole separation in TiO2nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys. Chem. Chem. Phys. 2007, 9, 1453-1460, 10.1039/B617552J
[34] Tamaki, Y.; Hara, K.; Katoh, R.; Tachiya, M.; Furube, A. Femtosecond visible-to-IR spectroscopy of TiO2nanocrystalline films: Elucidation of the electron mobility before deep trapping. J. Phys. Chem. C 2009, 113, 11741-11746, 10.1021/jp901833j
[35] Philip Colombo, D.; Roussel, K. A.; Saeh, J.; Skinner, D. E.; Cavaleri, J. J.; Bowman, R. M. Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2nanoclusters. Chem. Phys. Lett. 1995, 232, 207-214, 10.1016/0009-2614(94)01343-T
[36] Kumar, N.; Cui, Q.; Ceballos, F.; He, D.; Wang, Y.; Zhao, H. Exciton-exciton annihilation in MoSe2monolayers. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 125427, 10.1103/PhysRevB.89.125427
[37] Zhang, J. Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 2000, 104, 7239-7253, 10.1021/jp000594s
[38] Ishii, A.; Yoshida, M.; Kato, Y. K. Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 125427, 10.1103/PhysRevB.91.125427
[39] Guo, C.; Meng, X.; Fu, H.; Wang, Q.; Wang, H.; Tian, Y.; Peng, J.; Ma, R.; Weng, Y.; Meng, S. et al. Probing nonequilibrium dynamics of photoexcited polarons on a metal-oxide surface with atomic precision. Phys. Rev. Lett. 2020, 124, 206801, 10.1103/PhysRevLett.124.206801
[40] Emin, D. Generalized adiabatic polaron hopping: Meyer-Neldel compensation and Poole-Frenkel behavior. Phys. Rev. Lett. 2008, 100, 166602, 10.1103/PhysRevLett.100.166602
[41] Wheeler, D. A.; Zhang, J. Z. Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 2013, 25, 2878-2896, 10.1002/adma.201300362
[42] Biswas, S.; Husek, J.; Londo, S.; Baker, L. R. Ultrafast electron trapping and defect-mediated recombination in NiO probed by femtosecond extreme ultraviolet reflection-absorption spectroscopy. J. Phys. Chem. Lett. 2018, 9, 5047-5054, 10.1021/acs.jpclett.8b01865
Citation statistics
Cited Times:15[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Co-First AuthorXiao, Shuyu
Corresponding AuthorTu, Wenguang; He, Tingchao; Zhu, Xi; Zou, Zhigang
1.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
2.Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
3.Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
4.Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
5.Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Jiangsu Key Lab Nano Technol, Sch Phys,Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
Recommended Citation
GB/T 7714
Zhu, Heng,Xiao, Shuyu,Tu, Wenguanget al. In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO2 Nanorod Photoanodes[J]. Journal of Physical Chemistry Letters,2021.
APA Zhu, Heng., Xiao, Shuyu., Tu, Wenguang., Yan, Shicheng., He, Tingchao., .. & Zou, Zhigang. (2021). In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO2 Nanorod Photoanodes. Journal of Physical Chemistry Letters.
MLA Zhu, Heng,et al."In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO2 Nanorod Photoanodes".Journal of Physical Chemistry Letters (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Zhu, Heng]'s Articles
[Xiao, Shuyu]'s Articles
[Tu, Wenguang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhu, Heng]'s Articles
[Xiao, Shuyu]'s Articles
[Tu, Wenguang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhu, Heng]'s Articles
[Xiao, Shuyu]'s Articles
[Tu, Wenguang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.