Details of Research Outputs

TitleNickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of 1,n-Dinitriles
Author (Name in English or Pinyin)
Long, Jinguo1; Xia, Shaomiao2; Wang, Ting2; Cheng, Gui-Juan2,3; Fang, Xianjie1
Date Issued2021-11-19
Source PublicationACS Catalysis
ISSN2155-5435
DOI10.1021/acscatal.1c03729
Indexed BySCIE
Firstlevel Discipline化学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 11 期: 22 页: 13880-13890
References
[1] Trost, B. M.; Van Vranken, D. L. Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chem. Rev. 1996, 96, 395-422, 10.1021/cr9409804
[2] Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chem. Rev. 2003, 103, 2921-2944, 10.1021/cr020027w
[3] Trost, B. M.; Machacek, M. R.; Aponick, A. Predicting the Stereochemistry of Diphenylphosphino Benzoic Acid (DPPBA)-Based Palladium-Catalyzed Asymmetric Allylic Alkylation Reactions: A Working Model. Acc. Chem. Res. 2006, 39, 747-760, 10.1021/ar040063c
[4] Hong, A. Y.; Stoltz, B. M. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis. Eur. J. Org. Chem. 2013, 2013, 2745-2759, 10.1002/ejoc.201201761
[5] Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855-1969, 10.1021/acs.chemrev.8b00506
[6] Süsse, L.; Stoltz, B. M. Enantioselective Formation of Quaternary Centers by Allylic Alkylation with First-Row Transition-Metal Catalysts. Chem. Rev. 2021, 121, 4084-4099, 10.1021/acs.chemrev.0c01115
[7] Sundararaju, B.; Achard, M.; Bruneau, C. Transition Metal Catalyzed Nucleophilic Allylic Substitution: Activation of Allylic Alcohols via π-Allylic Species. Chem. Soc. Rev. 2012, 41, 4467-4483, 10.1039/c2cs35024f
[8] Zhang, H.; Gu, Q.; You, S. Recent Advances in Ni-Catalyzed Allylic Substitution Reactions. Chin. J. Org. Chem. 2019, 39, 15-27, 10.6023/cjoc201809037
[9] Chuit, C.; Felkin, H.; Frajerman, C.; Roussi, G.; Swierczewski, G. Carbon-Carbon Bond Formation in the Dichlorobis(triphenylphosphine) Nickel-catalyzed Reaction between Grignard Reagents and Allylic Alcohols. Chem. Commun. 1968, 1604-1605, 10.1039/C19680001604
[10] Yang, B.; Wang, Z.-X. Nickel-Catalyzed Cross-Coupling of Allyl Alcohols with Aryl-or Alkenylzinc Reagents. J. Org. Chem. 2017, 82, 4542-4549, 10.1021/acs.joc.6b02564
[11] Nazari, S. H.; Bourdeau, J. E.; Talley, M. R.; Valdivia-Berroeta, G. A.; Smith, S. J.; Michaelis, D. J. Nickel-Catalyzed Suzuki Cross Couplings with Unprotected Allylic Alcohols Enabled by Bidentate N-Heterocyclic Carbene (NHC)/Phosphine Ligands. ACS Catal. 2018, 8, 86-89, 10.1021/acscatal.7b03079
[12] Gan, Y.; Xu, W.; Liu, Y. Ligand-Controlled Regiodivergent Silylation of Allylic Alcohols by Ni/Cu Catalysis for the Synthesis of Functionalized Allylsilanes. Org. Lett. 2019, 21, 9652-9657, 10.1021/acs.orglett.9b03822
[13] Gan, Y.; Hu, H.; Liu, Y. Nickel-Catalyzed Homo-and Cross-Coupling of Allyl Alcohols via Allyl Boronates. Org. Lett. 2020, 22, 4418-4423, 10.1021/acs.orglett.0c01424
[14] Bricout, H.; Carpentier, J.-F.; Mortreux, A. Nickel vs. Palladium Catalysts for Coupling Reactions of Allyl Alcohol with Soft Nucleophiles: Activities and Deactivation Processes. J. Mol. Catal. A: Chem. 1998, 136, 243-251, 10.1016/S1381-1169(98)00067-3
[15] Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Asymmetric Allylic Alkylation of β-Ketoesters with Allylic Alcohols by a Nickel/Diphosphine Catalyst. Angew. Chem., Int. Ed. 2016, 55, 1098-1101, 10.1002/anie.201508757
[16] Blieck, R.; Azizi, M. S.; Mifleur, A.; Roger, M.; Persyn, C.; Sauthier, M.; Bonin, H. Nickel-Catalysed Bis-Allylation of Activated Nucleophiles with Allyl-Alcohol. Eur. J. Org. Chem. 2016, 2016, 1194-1198, 10.1002/ejoc.201501556
[17] Bernhard, Y.; Thomson, B.; Ferey, V.; Sauthier, M. Nickel-Catalyzed α-Allylation of Aldehydes and Tandem Aldol Condensation/Allylation Reaction with Allylic Alcohols. Angew. Chem., Int. Ed. 2017, 56, 7460-7464, 10.1002/anie.201703486
[18] Ngamnithiporn, A.; Jette, C. I.; Bachman, S.; Virgil, S. C.; Stoltz, B. M. Nickel-Catalyzed Enantioselective Allylic Alkylation of Lactones and Lactams with Unactivated Allylic Alcohols. Chem. Sci. 2018, 9, 2547-2551, 10.1039/C7SC05216B
[19] Zhang, H.-J.; Gu, Q.; You, S.-L. Ni-Catalyzed Intermolecular Allylic Dearomatization Reaction of Tryptophols and Tryptamines. Org. Lett. 2019, 21, 9420-9424, 10.1021/acs.orglett.9b03633
[20] Zhang, H.-J.; Gu, Q.; You, S.-L. Ni-Catalyzed Allylic Dearomatization Reaction of β-Naphthols with Allylic Alcohols. Org. Lett. 2020, 22, 3297-3301, 10.1021/acs.orglett.0c01109
[21] Furukawa, J.; Kui, J.; Tojo, K.; Yamamoto, T. Nickel-Catalyzed Allyl-Transfer Reactions. Tetrahedron 1973, 29, 3149-3151, 10.1016/S0040-4020(01)93457-X
[22] Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Pentacoordinated Carboxylate π-Allyl Nickel Complexes as Key Intermediates for the Ni-Catalyzed Direct Amination of Allylic Alcohols. Chem.-Eur. J. 2015, 21, 14571-14578, 10.1002/chem.201502329
[23] Azizi, M. S.; Edder, Y.; Karim, A.; Sauthier, M. Nickel(0)-Catalyzed N-Allylation of Amides and p-Toluenesulfonamide with Allylic Alcohols under Neat and Neutral Conditions. Eur. J. Org. Chem. 2016, 2016, 3796-3803, 10.1002/ejoc.201600500
[24] Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith, L. J. A Simple, Broad-Scope Nickel(0) Precatalyst System for the Direct Amination of Allyl Alcohols. Angew. Chem., Int. Ed. 2018, 57, 10202-10206, 10.1002/anie.201805611
[25] Long, J.; Yu, R.; Gao, J.; Fang, X. Access to 1,3-Dinitriles by Enantioselective Auto-tandem Catalysis: Merging Allylic Cyanation with Asymmetric Hydrocyanation. Angew. Chem., Int. Ed. 2020, 59, 6785-6789, 10.1002/anie.202000704
[26] Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H. Nitriles. In Ullman's Encyclopedia of Industrial Chemistry, 5 th ed.; Wiley-VCH: Weinheim, Germany, 1985; Vol. A17, p 363.
[27] Pu, W.; Sun, D.; Fan, W.; Pan, W.; Chai, Q.; Wang, X.; Lv, Y. Cu-Catalyzed Atom Transfer Radical Addition Reactions of Alkenes with α-Bromoacetonitrile. Chem. Commun. 2019, 55, 4821-4824, 10.1039/C9CC01988J
[28] Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Proton-Coupled Electron Transfer Enables Tandem Radical Relay for Asymmetric Copper-Catalyzed Phosphinoylcyanation of Styrenes. Org. Lett. 2019, 21, 5015-5020, 10.1021/acs.orglett.9b01607
[29] Tsuji, Y.; Yamada, N.; Tanaka, S. Cyanation of Allylic Carbonates and Acetates Using Trimethylsilyl Cyanide Catalyzed by Palladium Complex. J. Org. Chem. 1993, 58, 16-17, 10.1021/jo00053a007
[30] Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura, T. Palladium-Complex-Catalyzed Cyanation of Allylic Carbonates and Acetates Using Trimethylsilyl Cyanide. Organometallics 1998, 17, 4835-4841, 10.1021/om980511i
[31] Bai, D.-C.; Wang, W.-Y.; Ding, C.-H.; Hou, X.-L. Kinetic Resolution of Unsymmetrical Acyclic Allyl Carbonates Using Trimethylsilyl Cyanide via Palladium-Catalyzed Asymmetric Allylic Alkylation. Synlett 2015, 26, 1510-1514, 10.1055/s-0034-1378709
[32] Munemori, D.; Tsuji, H.; Uchida, K.; Suzuki, T.; Isa, K.; Minakawa, M.; Kawatsura, M. Copper-Catalyzed Regioselective Allylic Cyanation of Allylic Compounds with Trimethylsilyl Cyanide. Synthesis 2014, 46, 2747-2750, 10.1055/s-0034-1378322
[33] Michel, N. W. M.; Jeanneret, A. D. M.; Kim, H.; Rousseaux, S. A. L. Nickel-Catalyzed Cyanation of Benzylic and Allylic Pivalate Esters. J. Org. Chem. 2018, 83, 11860-11872, 10.1021/acs.joc.8b01763
[34] Xing, Y.; Yu, R.; Fang, X. Synthesis of Tertiary Benzylic Nitriles via Nickel-Catalyzed Markovnikov Hydrocyanation of α-Substituted Styrenes. Org. Lett. 2020, 22, 1008-1012, 10.1021/acs.orglett.9b04554
[35] Bini, L.; Müller, C.; Vogt, D. Ligand Development in the Ni-Catalyzed Hydrocyanation of Alkenes. Chem. Commun. 2010, 46, 8325-8334, 10.1039/c0cc01452d
[36] Bini, L.; Müller, C.; Vogt, D. Mechanistic Studies on Hydrocyanation Reactions. ChemCatChem 2010, 2, 590-608, 10.1002/cctc.201000034
[37] RajanBabu, T. V. Hydrocyanation of Alkenes and Alkynes. Org. React. 2011, 75, 1-73, 10.1002/0471264180.or075.01
[38] Kurono, N.; Ohkuma, T. Catalytic Asymmetric Cyanation Reactions. ACS Catal. 2016, 6, 989-1023, 10.1021/acscatal.5b02184
[39] Zhang, H.; Su, X.; Dong, K. Recent Progress in Transition-Metal-Catalyzed Hydrocyanation of Nonpolar Alkenes and Alkynes. Org. Biomol. Chem. 2020, 18, 391-399, 10.1039/C9OB02374G
[40] Wu, W.-B.; Yu, J.-S.; Zhou, J. Catalytic Enantioselective Cyanation: Recent Advances and Perspectives. ACS Catal. 2020, 10, 7668-7690, 10.1021/acscatal.0c01918
[41] McKinney, R. J.; Roe, D. C. The Mechanism of Nickel-Catalyzed Ethylene Hydrocyanation. Reductive Elimination by an Associative Process. J. Am. Chem. Soc. 1986, 108, 5167-5173, 10.1021/ja00277a022
[42] RajanBabu, T. V.; Casalnuovo, A. L. Tailored Ligands for Asymmetric Catalysis: the Hydrocyanation of Vinyl Arenes. J. Am. Chem. Soc. 1992, 114, 6265-6266, 10.1021/ja00041a066
[43] Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D.; Keim, W. Effect of the Bite Angle of Diphosphine Ligands on Activity and Selectivity in the Nickel-Catalysed Hydrocyanation of Syrene. J. Chem. Soc., Chem. Commun. 1995, 2177-2178, 10.1039/c39950002177
[44] Bini, L.; Pidko, E. A.; Müller, C.; van Santen, R. A.; Vogt, D. Lewis Acid Controlled Regioselectivity in Styrene Hydrocyanation. Chem.-Eur. J 2009, 15, 8768-538778, 10.1002/chem.200802611
[45] de Greef, M.; Breit, B. Self-Assembled Bidentate Ligands for the Nickel-Catalyzed Hydrocyanation of Alkenes. Angew. Chem., Int. Ed. 2009, 48, 551-554, 10.1002/anie.200805092
[46] Falk, A.; Goederz, A.-L.; Schmalz, H.-G. Enantioselective Nickel-Catalyzed Hydrocyanation of Vinylarenes Using Chiral Phosphine-Phosphite Ligands and TMS-CN as a Source of HCN. Angew. Chem., Int. Ed. 2013, 52, 1576-1580, 10.1002/anie.201208082
[47] Nemoto, K.; Nagafuchi, T.; Tominaga, K.; Sato, K. Efficient Nickel-Catalyzed Hydrocyanation of Alkenes Using Acetone Cyanohydrin as a Safer Cyano Source. Tetrahedron Lett. 2016, 57, 3199-3203, 10.1016/j.tetlet.2016.06.036
[48] Fang, X.; Yu, P.; Morandi, B. Catalytic Reversible Alkene-Nitrile Interconversion through Controllable Transfer Hydrocyanation. Science 2016, 351, 832-836, 10.1126/science.aae0427
[49] Frye, N. L.; Bhunia, A.; Studer, A. Nickel-Catalyzed Markovnikov Transfer Hydrocyanation in the Absence of Lewis Acid. Org. Lett. 2020, 22, 4456-4460, 10.1021/acs.orglett.0c01454
[50] Bhawal, B. N.; Reisenbauer, J. C.; Ehinger, C.; Morandi, B. Overcoming Selectivity Issues in Reversible Catalysis: a Transfer Hydrocyanation Exhibiting High Kinetic Control. J. Am. Chem. Soc. 2020, 142, 10914-10920, 10.1021/jacs.0c03184
[51] Bhunia, A.; Bergander, K.; Studer, A. Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile. J. Am. Chem. Soc. 2018, 140, 16353-16359, 10.1021/jacs.8b10651
[52] Wang, G.; Xie, X.; Xu, W.; Liu, Y. Nickel-Catalyzed Highly Regioselective Hydrocyanation of Alkenes with Zn(CN)2. Org. Chem. Front. 2019, 6, 2037-2042, 10.1039/C9QO00396G
[53] Shu, X.; Jiang, Y.-Y.; Kang, L.; Yang, L. Ni-Catalyzed Hydrocyanation of Alkenes with Formamide as the Cyano Source. Green Chem. 2020, 22, 2734-2738, 10.1039/C9GC04275J
[54] Yu, R.; Rajasekar, S.; Fang, X. Enantioselective Nickel-Catalyzed Migratory Hydrocyanation of Nonconjugated Dienes. Angew. Chem., Int. Ed. 2020, 59, 21436-21441, 10.1002/anie.202008854
[55] Gao, J.; Jiao, M.; Ni, J.; Yu, R.; Cheng, G.-J.; Fang, X. Nickel-Catalyzed Migratory Hydrocyanation of Internal Alkenes: Unexpected Diastereomeric-Ligand-Controlled Regiodivergence. Angew. Chem., Int. Ed. 2021, 60, 1883-1890, 10.1002/anie.202011231
[56] Matsumoto, K.; Arai, S.; Nishida, A. Formal Synthesis of (±)-Quebrachamine through Regio-and Stereoselective Hydrocyanation of Arylallene. Tetrahedron 2018, 74, 2865-2870, 10.1016/j.tet.2018.04.044
[57] Grover, H. K.; Kerr, M. A. The Synthesis of 5,5-Disubstituted Piperidinones via a Reductive Amination-Lactamization Sequence: the Formal Synthesis of (±)-Quebrachamine. Synlett 2015, 26, 815-819, 10.1055/s-0034-1379986
[58] Bajtos, B.; Pagenkopf, B. L. Total Synthesis of (±)-Quebrachamine via [3+2] Cycloaddition and Efficient Chloroacetamide Photocyclization. Eur. J. Org. Chem. 2009, 2009, 1072-1077, 10.1002/ejoc.200801154
[59] Gonnard, L.; Guérinot, A.; Cossy, J. Cobalt-Catalyzed Cross-Coupling of 3-and 4-Iodopiperidines with Grignard Reagents. Chem.-Eur. J. 2015, 21, 12797-12803, 10.1002/chem.201501543
[60] Zhang, S.-J.; Sun, W.-W.; Yu, Q.-Y.; Cao, P.; Dong, X.-P.; Wu, B. Stereoselective Synthesis of (-)-3-PPP Through Palladium-Catalysed Unactivated C(sp3)-H Arylation at the C-3 Position of l-Pipecolinic Acid. Tetrahedron Lett. 2017, 58, 606-609, 10.1016/j.tetlet.2016.12.051
[61] Liu, X.-G.; Zhou, C.-J.; Lin, E.; Han, X.-L.; Zhang, S.-S.; Li, Q.; Wang, H. Decarboxylative Negishi Coupling of Redox-Active Aliphatic Esters by Cobalt Catalysis. Angew. Chem., Int. Ed. 2018, 57, 13096-13100, 10.1002/anie.201806799
[62] Macchia, M.; Cervetto, L.; Demontis, G. C.; Longoni, B.; Minutolo, F.; Orlandini, E.; Ortore, G.; Papi, C.; Sbrana, A.; Macchia, B. New N-n-Propyl-Substituted 3-Aryl-and 3-Cyclohexylpiperidines as Partial Agonists at the D4 Dopamine Receptor. J. Med. Chem. 2003, 46, 161-168, 10.1021/jm021019a
Citation statistics
Cited Times:11[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/2561
CollectionSchool of Medicine
Co-First AuthorXia, Shaomiao
Corresponding AuthorFang, Xianjie
Affiliation
1.Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai Key Lab Mol Engn Chiral Drugs, Shanghai 200240, Peoples R China
2.Chinese Univ Hong Kong Shenzhen , Sch Life & Hlth Sci, Shenzhen Key Lab Steroid Drug Dev, Warshel Inst Computat Biol, Shenzhen 518172, Peoples R China
3.Chinese Univ Hong Kong Shenzhen , Sch Life & Hlth Sci, Shenzhen 518172, Peoples R China
Recommended Citation
GB/T 7714
Long, Jinguo,Xia, Shaomiao,Wang, Tinget al. Nickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of 1,n-Dinitriles[J]. ACS Catalysis,2021.
APA Long, Jinguo, Xia, Shaomiao, Wang, Ting, Cheng, Gui-Juan, & Fang, Xianjie. (2021). Nickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of 1,n-Dinitriles. ACS Catalysis.
MLA Long, Jinguo,et al."Nickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of 1,n-Dinitriles".ACS Catalysis (2021).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Long, Jinguo]'s Articles
[Xia, Shaomiao]'s Articles
[Wang, Ting]'s Articles
Baidu academic
Similar articles in Baidu academic
[Long, Jinguo]'s Articles
[Xia, Shaomiao]'s Articles
[Wang, Ting]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Long, Jinguo]'s Articles
[Xia, Shaomiao]'s Articles
[Wang, Ting]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.