Title | TIGHTNESS OF A NEW AND ENHANCED SEMIDEFINITE RELAXATION FOR MIMO DETECTION |
Author (Name in English or Pinyin) | |
Date Issued | 2019-03-05 |
Source Publication | SIAM JOURNAL ON OPTIMIZATION |
ISSN | 1052-6234 |
DOI | 10.1137/17M115075X |
Indexed By | SCIE |
Firstlevel Discipline | 信息科学与系统科学 |
Education discipline | 科技类 |
Published range | 国外学术期刊 |
Volume Issue Pages | 卷: 29 期: 1 页: 719-742 |
References | [1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Complementarity and nondegeneracy in semidefinite programming, Math. Program., 77 (1997), pp. 111-128. [2] A. S. Bandeira, N. Boumal, and A. Singer, Tightness of the maximum likelihood semidefinite relaxation for angular synchronization, Math. Program., 163 (2017), pp. 145-167. [3] A. S. Bandeira, Y. Khoo, and A. Singer, Open problem: Tightness of maximum likelihood semidefinite relaxations, in Proceedings of the 27th Conference on Learning Theory, Proc. Mach. Learn. Res. 35, 2014, pp. 1265-1267; available at http://proceedings.mlr.press/v35/ bandeira14.html. [4] A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization problems with binary constraints, SIAM J. Optim., 11 (2000), pp. 179-188. [5] N. Boumal, Nonconvex phase synchronization, SIAM J. Optim., 26 (2016), pp. 2355-2377. [6] O. Damen, A. Chkeif, and J.-C. Belfiore, Lattice code decoder for space-time codes, IEEE Commun. Lett., 4 (2000), pp. 161-163. [7] K. R. Davidson and S. J. Szarek, Local Operator Theory, Random Matrices and Banach Spaces, in Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 317-366. [8] X. Fan, J. Song, D. P. Palomar, and O. C. Au, Universal binary semidefinite relaxation for ML signal detection, IEEE Trans. Commun., 61 (2013), pp. 4565-4576. [9] F. S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Birkh"auser, Basel, Switzerland, 2013. [10] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115-1145. [11] M. Goemans and D. Williamson, Approximation algorithms for Max-3-Cut and other problems via complex semidefinite programming, J. Comput. Syst. Sci., 68 (2004), pp. 442-470. [12] M. Honig, U. Madhow, and S. Verdu, Blind adaptive multiuser detection, IEEE Trans. Inf. Theory, 41 (1995), pp. 944-960. [13] S. Jacobsson, G. Durisi, M. Goldstein, and C. Studer, Quantized precoding for massive MU-MIMO, IEEE Trans. Commun., 65 (2017), pp. 4670-4684. [14] J. Jald'en, Detection for Multiple Input Multiple Output Channels, Ph.D. Thesis, School of Electrical Engineering, KTH, Stockholm, Sweden, 2006. [15] J. Jald'en, C. Martin, and B. Ottersten, Semidefinite programming for detection in linear systems-Optimality conditions and space-time decoding, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'03), IEEE Press, Piscataway, NJ, 2003, pp. 9-12. [16] J. Jald'en and B. Ottersten, The diversity order of the semidefinite relaxation detector, IEEE Trans. Inf. Theory, 54 (2008), pp. 1406-1422. [17] M. Kisialiou and Z.-Q. Luo, Performance analysis of quasi-maximum-likelihood detector based on semi-definite programming, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), IEEE Press, Piscataway, NJ, 2005, pp. 433-436. [18] M. Kisialiou and Z.-Q. Luo, Probabilistic analysis of semidefinite relaxation for binary quadratic minimization, SIAM J. Optim., 20 (2010), pp. 1906-1922. [19] R. Kohno, H. Imai, and M. Hatori, Cancellation techniques of co-channel interference in asynchronous spread spectrum multiple access systems, Trans. IECE Japan, 66-A (1983), pp. 416-423. [20] C. Lemarechal and F. Oustry, SDP relaxations in combinatorial optimization from a Lagrangian point of view, in Advances in Convex Analysis and Global Optimization, N. Hadijsavvas and P. M. Paradalos, eds., Kluwer, Norwell, MA, 2001, pp. 119-134. [21] H. Liu, M.-C. Yue, and A. M.-C. So, On the estimation performance and convergence rate of the generalized power method for phase synchronization, SIAM J. Optim., 27 (2017), pp. 2426-2446. [22] H. Liu, M.-C. Yue, and A. M.-C. So, A discrete first-order method for large-scale MIMO detection with provable guarantees, in Proceedings of the 18th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC'17), IEEE Press, Piscataway, NJ, 2017, pp. 669-673. [23] Y.-F. Liu, M. Hong, and Y.-H. Dai, Max-min fairness linear transceiver design problem for a multi-user SIMO interference channel is polynomial time solvable, IEEE Signal Process. Lett., 20 (2013), pp. 27-30. [24] C. Lu and Y.-F. Liu, An efficient global algorithm for single-group multicast beamforming, IEEE Trans. Signal Process., 65 (2017), pp. 3761-3774. [25] C. Lu, Y.-F. Liu, and J. Zhou, An efficient global algorithm for nonconvex complex quadratic problems with applications in wireless communications, in Proceedings of the 6th IEEE/CIC International Conference on Communications in China (ICCC'17), IEEE Press, Piscataway, NJ, 2017, pp. 1-5. [26] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Process. Mag., 27 (2010), pp. 20-34. [27] W.-K. Ma, P.-C. Ching, and Z. Ding, Semidefinite relaxation based multiuser detection for M-ary PSK multiuser systems, IEEE Trans. Signal Process., 52 (2004), pp. 2862-2872. [28] A. D. Maio, S. D. Nicola, Y. Huang, Z.-Q. Luo, and S. Zhang, Design of phase codes for radar performance optimization with a similarity constraint, IEEE Trans. Signal Process., 57 (2009), pp. 610-621. [29] A. Mobasher, M. Taherzadeh, R. Sotirov, and A. K. Khandani, A near-maximumlikelihood decoding algorithm for MIMO systems based on semi-definite programming, IEEE Trans. Inf. Theory, 53 (2007), pp. 3869-3886. [30] A. D. Murugan, H. E. Gamal, M. O. Damen, and G. Caire, A unified framework for tree search decoding: Rediscovering the sequential decoder, IEEE Trans. Inf. Theory, 52 (2006), pp. 933-953. [31] W. Pu, Y.-F. Liu, J. Yan, H. Liu, and Z.-Q. Luo, Optimal estimation of sensor biases for asynchronous multi-sensor data fusion, Math. Program. 170 (2018), pp. 357-386. [32] K. S. Schneider, Optimum detection of code division multiplexed signals, IEEE Trans. Aerosp. Electron. Syst., 15 (1979), pp. 181-185. [33] N. Z. Shor and A. S. Davydov, Method of obtaining estimates in quadratic extremal problems with Boolean variables, Cybern. Syst. Anal., 21 (1985), pp. 207-210. [34] A. Singer, Angular synchronization by eigenvectors and semidefinite programming, Appl. Comput. Harmon. Anal., 30 (2011), pp. 20-36. [35] A. M.-C. So, Probabilistic analysis of the semidefinite relaxation detector in digital communications, in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10), SIAM, Philadelphia, PA, 2011, pp. 698-711. [36] A. M.-C. So, J. Zhang, and Y. Ye , On approximating complex quadratic optimization problems via semidefinite programs, Math. Program., 110 (2007), pp. 93-110. [37] F. Sohrabi, Y.-F. Liu, and W. Yu, One-bit precoding and constellation range design for massive MIMO with QAM signaling, IEEE J. Sel. Topics Signal Process., 12 (2018), pp. 557-570. [38] M. Soltanalian and P. Stoica, Designing unimodular codes via quadratic optimization, IEEE Trans. Signal Process., 62 (2014), pp. 1221-1234. [39] J. Sun, Q. Qu, and J. Wright, When are Nonconvex Problems Not Scary?, preprint, https: //arxiv.org/abs/1510.06096, 2016. [40] P. H. Tan and L. K. Rasmussen, The application of semidefinite programming for detection in CDMA, IEEE J. Sel. Areas Commun., 19 (2001), pp. 1442-1449. [41] M. K. Varanasi, Decision feedback multiuser detection: A systematic approach, IEEE Trans. Inf. Theory, 45 (1999), pp. 219-240. [42] S. Verd'u, Computational complexity of optimum multiuser detection, Algorithmica, 4 (1989), pp. 303-312. [43] S. Verd'u, Multiuser Detection, Cambridge University Press, New York, 1998. [44] I. Waldspurger, A. Aspremont, and S. Mallat, Phase recovery, MaxCut and complex semidefinite programming, Math. Program., 149 (2015), pp. 47-81. [45] Z. Xie, R. T. Short, and C. K. Rushforth, A family of suboptimum detectors for coherent multi-user communications, IEEE J. Sel. Areas Commun., 8 (1990), pp. 683-690. [46] S. Yang and L. Hanzo, Fifty years of MIMO detection: The road to large-scale MIMOs, IEEE Commun. Surveys Tuts., 17 (2015), pp. 1941-1988. [47] S. Zhang and Y. Huang, Complex quadratic optimization and semidefinite programming, SIAM J. Optim., 16 (2006), pp. 871-890. |
Citation statistics | |
Document Type | Journal article |
Identifier | https://irepository.cuhk.edu.cn/handle/3EPUXD0A/281 |
Collection | School of Data Science |
Corresponding Author | Liu, Ya-Feng |
Affiliation | 1.North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China 3.Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China 4.Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA 5.Chinese Univ Hong Kong , Inst Data & Decis Analyt, Shenzhen 518172, Peoples R China |
Recommended Citation GB/T 7714 | Lu, Cheng,Liu, Ya-Feng,Zhang, Wei-Qianget al. TIGHTNESS OF A NEW AND ENHANCED SEMIDEFINITE RELAXATION FOR MIMO DETECTION[J]. SIAM JOURNAL ON OPTIMIZATION,2019. |
APA | Lu, Cheng, Liu, Ya-Feng, Zhang, Wei-Qiang, & Zhang, Shuzhong. (2019). TIGHTNESS OF A NEW AND ENHANCED SEMIDEFINITE RELAXATION FOR MIMO DETECTION. SIAM JOURNAL ON OPTIMIZATION. |
MLA | Lu, Cheng,et al."TIGHTNESS OF A NEW AND ENHANCED SEMIDEFINITE RELAXATION FOR MIMO DETECTION".SIAM JOURNAL ON OPTIMIZATION (2019). |
Files in This Item: | ||||||
There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment