Details of Research Outputs

TitleData-Driven Nonparametric Existence and Association Problems
Author (Name in English or Pinyin)
Liu, Yixian1,2,3; Liang, Yingbin4; Cui, Shuguang5,6,7
Date Issued2018-12-15
Source PublicationIEEE TRANSACTIONS ON SIGNAL PROCESSING
ISSN1053-587X
DOI10.1109/TSP.2018.2875392
Indexed BySCIE
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 66 期: 24 页: 6377-6389
References
[1] B. C. Levy, Principles of Signal Detection and Parameter Estimation. New York, NY, USA: Springer, 2008.
[2] T.M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2012.
[3] J. Ziv, "On classification with empirically observed statistics and universal data compression," IEEE Trans. Inf. Theory, vol. IT-34, no. 2, pp. 278-286, Mar. 1988.
[4] M. Gutman, "Asymptotically optimal classification for multiple tests with empirically observed statistics," IEEE Trans. Inf. Theory, vol. 35, no. 2, pp. 401-408, Mar. 1989.
[5] O. Zeitouni, J. Ziv, and N. Merhav, "When is the generalized likelihood ratio test optimal?" IEEE Trans. Inf. Theory, vol. 38, no. 5, pp. 1597-1602, Sep. 1992.
[6] D. Oshaughnessy, "Speaker recognition," IEEE ASSP Mag., vol. 3, no. 9, pp. 4-17, Oct. 1986.
[7] J. P. Campbell, "Speaker recognition: A tutorial," Proc. IEEE, vol. 85, no. 9, pp. 1437-1462, Sep. 1997.
[8] M. Feder and A. Lapidoth, "Universal decoding for channels with memory," IEEE Trans. Inf. Theory, vol. 44, no. 5, pp. 1726-1745, Sep. 1998.
[9] K. Pearson, "On the probability that two independent distributions of frequency are really samples from the same population," Biometrika, vol. 8, no. 1/2, pp. 250-254, Jul. 1911.
[10] J. Unnikrishnan, "On optimal two sample homogeneity tests for finite alphabets," in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA, Jul. 2012, pp. 2027-2031.
[11] E. L. Lehmann and C. Stein, "Most powerful tests of composite hypotheses. I. Normal distributions," Ann. Math. Statist., vol. 19, no. 4, pp. 495-516, Dec. 1948.
[12] Y. W. Huang and P. Moulin, "Strong large deviations for composite hypothesis testing," in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014, pp. 556-560.
[13] A. O. Hero, "Geometric entropy minimization (GEM) for anomaly detection and localization," in Proc. Advances Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2006, pp. 585-592.
[14] A. O. Hero and O. Michel, "Asymptotic theory of greedy approximations to minimal k-point random graphs," IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 1921-1938, Sep. 1999.
[15] M. Zhao and V. Saligrama, "Anomaly detectionwith score functions based on nearest neighbor graphs," in Proc. Advances Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2009, pp. 2250-2258.
[16] P. R. Rosenbaum, "An exact distribution-free test comparing two multivariate distributions based on adjacency," J. Roy. Statistical Soc.: Ser. B (Statist. Methodol.), vol. 67, no. 4, pp. 515-530, Aug. 2005.
[17] J. H. Friedman and L. C. Rafsky, "Multivariate generalizations of the wald-wolfowitz and smirnov two-sample tests," Ann. Statist., vol. 7, no. 4, pp. 697-717, Jul. 1979.
[18] P. Hall and N. Tajvidi, "Permutation tests for equality of distributions in high-dimensional settings," Biometrika, vol. 89, no. 2, pp. 359-374, Jun. 2002.
[19] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, "A kernel two-sample test," J. Mach. Learn. Res., vol. 13, pp. 723-773, Mar. 2012.
[20] L. Lai, H. V. Poor, Y. Xin, and G. Georgiadis, "Quickest search over multiple sequences," IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5375-5386, Jul. 2011.
[21] Y. Li, S. Nitinawarat, and V. V. Veeravalli, "Universal outlier hypothesis testing," IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4066-4082, Apr. 2014.
[22] S. Zou, Y. Liang, H. V. Poor, and X. Shi, "Nonparametric detection of anomalous data streams," IEEE Trans. Signal Process., vol. 65, no. 21, pp. 5785-5797, Nov. 2017.
[23] Y. Bu, S. Zou, and V. V. Veeravalli, "Linear complexity exponentially consistent tests for outlying sequence detection," in Proc. IEEE Int. Symp. Inf. Theory, Aachen, Germany, Jun. 2017, pp. 988-992.
[24] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, "Testing closeness of discrete distributions," J. ACM, vol. 60, no. 1, pp. 4:1-4:25, Feb. 2013.
[25] S.-O. Chan, I. Diakonikolas, G. Valiant, and P. Valiant, "Optimal algorithms for testing closeness of discrete distributions," in Proc. ACM-SIAM Symp. Discrete Algorithms, Portland, OR, USA, Jan. 2014, pp. 1193-1203.
[26] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA: Princeton Univ. Press, 2015.
[27] A. Nedić and A. Ozdaglar, "Subgradient methods for saddle-point problems," J. Optim. Theory Appl., vol. 142, no. 1, pp. 205-228, Mar. 2009.
[28] H. Attouch, J. Bolte, and B. F. Svaiter, "Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods," Math. Program., vol. 137, no. 1/2, pp. 91-129, Aug. 2013.
[29] J. C. Dunn, "On the convergence of projected gradient processes to singular critical points," J. Optim. Theory Appl., vol. 55, no. 2, pp. 203-216, Nov. 1987.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/291
CollectionSchool of Science and Engineering
Corresponding AuthorLiu, Yixian
Affiliation
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 200031, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200031, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100864, Peoples R China
4.Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
5.Chinese Univ Hong Kong , Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
6.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Peoples R China
7.Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
Recommended Citation
GB/T 7714
Liu, Yixian,Liang, Yingbin,Cui, Shuguang. Data-Driven Nonparametric Existence and Association Problems[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2018.
APA Liu, Yixian, Liang, Yingbin, & Cui, Shuguang. (2018). Data-Driven Nonparametric Existence and Association Problems. IEEE TRANSACTIONS ON SIGNAL PROCESSING.
MLA Liu, Yixian,et al."Data-Driven Nonparametric Existence and Association Problems".IEEE TRANSACTIONS ON SIGNAL PROCESSING (2018).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Liu, Yixian]'s Articles
[Liang, Yingbin]'s Articles
[Cui, Shuguang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Yixian]'s Articles
[Liang, Yingbin]'s Articles
[Cui, Shuguang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Yixian]'s Articles
[Liang, Yingbin]'s Articles
[Cui, Shuguang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.