Details of Research Outputs

TitleCurrent-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer
Author (Name in English or Pinyin)
Xia, Jing1; Zhang, Xichao1; Ezawa, Motohiko2; Hou, Zhipeng3,4; Wang, Wenhong4; Liu, Xiaoxi5; Zhou, Yan1
Date Issued2019-04-16
Source PublicationPhysical Review Applied
ISSN2331-7019
DOI10.1103/PhysRevApplied.11.044046
Indexed BySCIE
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 11 期: 4
References
[1] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature 442, 797 (2006). 0028-0836 10.1038/nature05056
[2] N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotech. 8, 899 (2013). 1748-3387 10.1038/nnano.2013.243
[3] W. Jiang, G. Chen, K. Liu, J. Zang, S. G. Velthuiste, and A. Hoffmann, Skyrmions in magnetic multilayers, Phys. Rep. 704, 1 (2017). 0370-1573 10.1016/j.physrep.2017.08.001
[4] S.-Z. Lin, C. Reichhardt, C. D. Batista, and A. Saxena, Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep, Phys. Rev. B 87, 214419 (2013). 1098-0121 10.1103/PhysRevB.87.214419
[5] G. Finocchio, F. Büttner, R. Tomasello, M. Carpentieri, and M. Kläui, Magnetic skyrmions: From fundamental to applications, J. Phys. D: Appl. Phys. 49, 423001 (2016). 0022-3727 10.1088/0022-3727/49/42/423001
[6] W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, Skyrmion-electronics: An overview and outlook, Proc. IEEE 104, 2040 (2016). 0018-9219 10.1109/JPROC.2016.2591578
[7] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2, 17031 (2017). 2058-8437 10.1038/natrevmats.2017.31
[8] Y. Zhou, Magnetic skyrmions: Intriguing physics and new spintronic device concepts, Natl. Sci. Rev. 6, 1 (2018). 2095-5138 10.1093/nsr/nwy109
[9] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotech. 8, 839 (2013). 1748-3387 10.1038/nnano.2013.210
[10] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, A strategy for the design of skyrmion racetrack memories, Sci. Rep. 4, 6784 (2014). 2045-2322 10.1038/srep06784
[11] G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri, and K. L. Wang, Room-temperature skyrmion shift device for memory application, Nano Lett. 17, 261 (2017). 1530-6984 10.1021/acs.nanolett.6b04010
[12] J. Müller, Magnetic skyrmions on a two-lane racetrack, New J. Phys. 19, 025002 (2017). 1367-2630 10.1088/1367-2630/aa5b55
[13] X. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions, Sci. Rep. 5, 9400 (2015). 2045-2322 10.1038/srep09400
[14] Y. Huang, W. Kang, X. Zhang, Y. Zhou, and W. Zhao, Magnetic skyrmion-based synaptic devices, Nanotechnology 28, 08LT02 (2017). 0957-4484 10.1088/1361-6528/aa5838
[15] S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, Magnetic skyrmion-based artificial neuron device, Nanotechnology 28, 31LT01 (2017). 0957-4484 10.1088/1361-6528/aa7af5
[16] D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff, M. Kläui, J. Sinova, and K. Everschor-Sitte, Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing, Phys. Rev. Appl. 9, 014034 (2018). 2331-7019 10.1103/PhysRevApplied.9.014034
[17] G. Bourianoff, D. Pinna, M. Sitte, and K. Everschor-Sitte, Potential implementation of reservoir computing models based on magnetic skyrmions, AIP Adv. 8, 055602 (2018). 2158-3226 10.1063/1.5006918
[18] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral magnet, Science 323, 915 (2009). 0036-8075 10.1126/science.1166767
[19] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901 (2010). 0028-0836 10.1038/nature09124
[20] H. Du, R. Che, L. Kong, X. Zhao, C. Jin, C. Wang, J. Yang, W. Ning, R. Li, C. Jin, X. Chen, J. Zang, Y. Zhan, and M. Tian, Edge-mediated skyrmion chain and its collective dynamics in a confined geometry, Nat. Commun. 6, 8504 (2015). 2041-1723 10.1038/ncomms9504
[21] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Anatomy of Dzyaloshinskii-Moriya Interaction at (Equation presented)/(Equation presented) Interfaces, Phys. Rev. Lett. 115, 267210 (2015). 0031-9007 10.1103/PhysRevLett.115.267210
[22] S. Woo, K. Litzius, B. Kruger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Klaui, and G. S. D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater. 15, 501 (2016). 1476-1122 10.1038/nmat4593
[23] C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotech. 11, 444 (2016). 1748-3387 10.1038/nnano.2015.313
[24] S. D. Pollard, J. A. Garlow, J. Yu, Z. Wang, Y. Zhu, and H. Yang, Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy, Nat. Commun. 8, 14761 (2017). 2041-1723 10.1038/ncomms14761
[25] S. Woo, K. M. Song, X. Zhang, M. Ezawa, Y. Zhou, X. Liu, M. Weigand, S. Finizio, J. Raabe, M.-C. Park, K.-Y. Lee, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy, Nat. Electron. 1, 288 (2018). 2520-1131 10.1038/s41928-018-0070-8
[26] X. Zhang, Y. Zhou, and M. Ezawa, Magnetic bilayer-skyrmions without skyrmion Hall effect, Nat. Commun. 7, 10293 (2016). 2041-1723 10.1038/ncomms10293
[27] W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and S. G. E. Velthuiste, Direct observation of the skyrmion Hall effect, Nat. Phys. 13, 162 (2017). 1745-2473 10.1038/nphys3883
[28] K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O. A. Tretiakov, J. Forster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G. S. D. Beach, and M. Klaui, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy, Nat. Phys. 13, 170 (2017). 1745-2473 10.1038/nphys4000
[29] A. O. Leonov and M. Mostovoy, Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet, Nat. Commun. 6, 8275 (2015). 2041-1723 10.1038/ncomms9275
[30] S.-Z. Lin and S. Hayami, Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions, Phys. Rev. B 93, 064430 (2016). 2469-9950 10.1103/PhysRevB.93.064430
[31] S. Hayami, S.-Z. Lin, and C. D. Batista, Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy, Phys. Rev. B 93, 184413 (2016). 2469-9950 10.1103/PhysRevB.93.184413
[32] L. Rózsa, A. Deák, E. Simon, R. Yanes, L. Udvardi, L. Szunyogh, and U. Nowak, Skyrmions with Attractive Interactions in an Ultrathin Magnetic Film, Phys. Rev. Lett. 117, 157205 (2016). 0031-9007 10.1103/PhysRevLett.117.157205
[33] A. O. Leonov and M. Mostovoy, Edge states and skyrmion dynamics in nanostripes of frustrated magnets, Nat Commun. 8, 14394 (2017). 2041-1723 10.1038/ncomms14394
[34] X. Zhang, J. Xia, Y. Zhou, X. Liu, H. Zhang, and M. Ezawa Nat., Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition, Commun. 8, 1717 (2017). 2041-1723 10.1038/s41467-017-01785-w
[35] H. Y. Yuan, O. Gomonay, and M. Kläui, Skyrmions and multisublattice helical states in a frustrated chiral magnet, Phys. Rev. B 96, 134415 (2017). 2469-9950 10.1103/PhysRevB.96.134415
[36] Y. A. Kharkov, O. P. Sushkov, and M. Mostovoy, Bound States of Skyrmions, and Merons Near the Lifshitz Point, Phys. Rev. Lett. 119, 207201 (2017). 0031-9007 10.1103/PhysRevLett.119.207201
[37] Z. Hou, W. Ren, B. Ding, G. Xu, Y. Wang, B. Yang, Q. Zhang, Y. Zhang, E. Liu, F. Xu, W. Wang, G. Wu, X. Zhang, B. Shen, and Z. Zhang, Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy, Adv. Mater. 29, 1701144 (2017). 0935-9648 10.1002/adma.201701144
[38] P. Sutcliffe, Skyrmion Knots in Frustrated Magnets, Phys. Rev. Lett. 118, 247203 (2017). 0031-9007 10.1103/PhysRevLett.118.247203
[39] J. J. Liang, J. H. Yu, J. Chen, M. H. Qin, M. Zeng, X. B. Lu, X. S. Gao, and J. Liu, Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets, New J. Phys. 20, 053037 (2018). 1367-2630 10.1088/1367-2630/aac24c
[40] S.-H. Yang, K.-S. Ryu, and S. Parkin, Domain-wall velocities of up to 750 m (Equation presented) driven by exchange-coupling torque in synthetic antiferromagnets, Nat. Nanotech. 10, 221 (2015). 1748-3387 10.1038/nnano.2014.324
[41] A. Prudnikov, M. Li, M. D. Graef, and V. Sokalski, Simultaneous control of interlayer exchange coupling and the interfacial Dzyaloshinskii-Moriya interaction in (Equation presented)-based synthetic antiferromagnets, IEEE Magn. Lett. 10, 6100304 (2019). 1949-307X 10.1109/LMAG.2018.2882163
[42] X. Zhang, M. Ezawa, and Y. Zhou, Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks, Phys. Rev. B 94, 064406 (2016). 2469-9950 10.1103/PhysRevB.94.064406
[43] R. Tomasello, V. Puliafito, E. Martinez, A. Manchon, M. Ricci, M. Carpentieri, and G. Finocchio, Performance of synthetic antiferromagnetic racetrack memory: Domain wall versus skyrmion, J. Phys. D: Appl. Phys. 50, 325302 (2017). 0022-3727 10.1088/1361-6463/aa7a98
[44] W. Koshibae and N. Nagaosa, Theory of skyrmions in bilayer systems, Sci. Rep. 7, 42645 (2017). 2045-2322 10.1038/srep42645
[45] C. Ma, X. Zhang, J. Xia, M. Ezawa, W. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. Liu, Electric field-induced creation and directional motion of domain walls and skyrmion bubbles, Nano Lett. 19, 353 (2019). 1530-6984 10.1021/acs.nanolett.8b03983
[46] A. Hrabec, J. Sampaio, M. Belmeguenai, I. Gross, R. Weil, S. M. Chérif, A. Stashkevich, V. Jacques, A. Thiaville, and S. Rohart, Current-induced skyrmion generation and dynamics in symmetric bilayers, Nat. Commun. 8, 15765 (2017). 2041-1723 10.1038/ncomms15765
[47] R. Cacilhas, V. L. Carvalho-Santos, S. Vojkovic, E. B. Carvalho, A. R. Pereira, D. Altbir, and Á. S. Núñez, Coupling of skyrmions mediated by the RKKY interaction, Appl. Phys. Lett. 113, 212406 (2018). 0003-6951 10.1063/1.5062168
[48] J. Barker and O. A. Tretiakov, Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature, Phys. Rev. Lett. 116, 147203 (2016). 0031-9007 10.1103/PhysRevLett.116.147203
[49] X. Zhang, Y. Zhou, and M. Ezawa, Antiferromagnetic skyrmion: Stability, creation and manipulation, Sci. Rep. 6, 24795 (2016). 2045-2322 10.1038/srep24795
[50] B. Göbel, A. Mook, J. Henk, and I. Mertig, Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect, Phys. Rev. B 96, 060406(R) (2017). 2469-9950 10.1103/PhysRevB.96.060406
[51] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevApplied.11.044046 for the simulation modeling details and more information regarding the current-driven motion and separation of monolayer skyrmions, parameter-dependency diagrams, and Thiele equations for monolayer and bilayer skyrmions.
[52] M. J. Donahue and D. G. Porter, Interagency Report NO. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999) [http://math.nist.gov/oommf/].
[53] W. Koshibae and N. Nagaosa, Theory of antiskyrmions in magnets, Nat. Commun. 7, 10542 (2016). 2041-1723 10.1038/ncomms10542
[54] X. Zhang, J. Xia, G. P. Zhao, X. Liu, and Y. Zhou, Magnetic skyrmion transport in a nanotrack with spatially varying damping and non-adiabatic torque, IEEE Tran. Magn. 53, 1 (2017). 0018-9464 10.1109/TMAG.2018.2792846
[55] A. A. Thiele, Steady-State Motion of Magnetic Domains, Phys. Rev. Lett. 30, 230 (1973). 0031-9007 10.1103/PhysRevLett.30.230
[56] L. Heyne, J. Rhensius, D. Ilgaz, A. Bisig, U. Rüdiger, M. Kläui, L. Joly, F. Nolting, L. J. Heyderman, J. U. Thiele, and F. Kronast, Direct Determination of Large Spin-Torque Nonadiabaticity in Vortex Core Dynamics, Phys. Rev. Lett. 105, 187203 (2010). 0031-9007 10.1103/PhysRevLett.105.187203
[57] S. D. Pollard, L. Huang, K. S. Buchanan, D. A. Arena, and Y. Zhu, Direct dynamic imaging of non-adiabatic spin torque effects, Nat. Commun. 3, 1028 (2012). 2041-1723 10.1038/ncomms2025
[58] C. Reichhardt and C. J. O. Reichhardt, Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems, New J. Phys. 18, 095005 (2016). 1367-2630 10.1088/1367-2630/18/9/095005
[59] S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, Current-induced magnetic skyrmions oscillator, New J. Phys. 17, 023061 (2015). 1367-2630 10.1088/1367-2630/17/2/023061
[60] C. Jin, J. Wang, W. Wang, C. Song, J. Wang, H. Xia, and Q. Liu, Array of Synchronized Nano-Oscillators based on Repulsion between Domain Wall and Skyrmion, Phys. Rev. Appl. 9, 044007 (2018). 2331-7019 10.1103/PhysRevApplied.9.044007
Citation statistics
Cited Times:30[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/457
CollectionSchool of Science and Engineering
Co-First AuthorZhang, Xichao
Corresponding AuthorEzawa, Motohiko; Zhou, Yan
Affiliation
1.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
2.Univ Tokyo, Dept Appl Phys, 7-3-1 Hongo, Tokyo 1138656, Japan
3.South China Normal Univ, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China
4.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
5.Shinshu Univ, Dept Elect & Comp Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
Recommended Citation
GB/T 7714
Xia, Jing,Zhang, Xichao,Ezawa, Motohikoet al. Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer[J]. Physical Review Applied,2019.
APA Xia, Jing., Zhang, Xichao., Ezawa, Motohiko., Hou, Zhipeng., Wang, Wenhong., .. & Zhou, Yan. (2019). Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer. Physical Review Applied.
MLA Xia, Jing,et al."Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer".Physical Review Applied (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Xia, Jing]'s Articles
[Zhang, Xichao]'s Articles
[Ezawa, Motohiko]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xia, Jing]'s Articles
[Zhang, Xichao]'s Articles
[Ezawa, Motohiko]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xia, Jing]'s Articles
[Zhang, Xichao]'s Articles
[Ezawa, Motohiko]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.