Details of Research Outputs

TitleDeposition and reentrainment of colloidal particles in disordered fibrous filters under chemically and physically unfavorable conditions
Author (Name in English or Pinyin)
Lee, Handol1; Kang, Seungkoo1; Kim, Seong Chan1; Pui, David Y. H.1,2
Date Issued2019-07-15
Firstlevel Discipline工程与技术科学基础学科
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 582 页: 322-334
[1] Biswas, P., Wu, C.-Y., Nanoparticles and the environment. J. Air Waste Manag. Assoc. 55 (2005), 708–746.
[2] Huang, C.J., Yang, B.M., Chen, K.S., Chang, C.C., Kao, C.M., Application of membrane technology on semiconductor wastewater reclamation: a pilot-scale study. Desalination 278 (2011), 203–210.
[3] Bai, H., Zan, X., Zhang, L., Sun, D.D., Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Separ. Purif. Technol. 156 (2015), 922–930.
[4] Ganzenko, O., Oturan, N., Huguenot, D., van Hullebusch, E.D., Esposito, G., Oturan, M.A., Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency. Separ. Purif. Technol. 156 (2015), 987–995.
[5] Masciangioli, T., Zhang, W.-X., Peer reviewed: environmental technologies at the nanoscale. Environ. Sci. Technol. 37 (2003), 102A–108A.
[6] Oberdörster, G., Oberdörster, E., Oberdörster, J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (2005), 823–839.
[7] Dunphy Guzmán, K.A., Taylor, M.R., Banfield, J.F., Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ. Sci. Technol. 40 (2006), 1401–1407.
[8] Mueller, N.C., Nowack, B., Exposure modelling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42 (2008), 4447–4453.
[9] Reijnders, L., Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Clean. Prod. 14 (2006), 124–133.
[10] Benn, T.M., Westerhoff, P., Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42 (2008), 4133–4139.
[11] Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K., Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390 (2008), 396–409.
[12] Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., Crittenden, J.C., Stability of commercial metal oxide nanoparticles in water. Water Res. 42 (2008), 2204–2212.
[13] Hyung, H., Kim, J.-H., Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res. 43 (2009), 2463–2470.
[14] Abbott Chalew, T.E., Ajmani, G.S., Huang, H., Schwab, K.J., Evaluating nanoparticle breakthrough during drinking water treatment. Environ. Health Perspect. 121 (2013), 1161–1166.
[15] Srinivasan, R., Sorial, G.A., Treatment of perchlorate in drinking water: a critical review. Separ. Purif. Technol. 69 (2009), 7–21.
[16] Altmann, J., Ruhl, A.S., Sauter, D., Pohl, J., Jekel, M., How to dose powdered activated carbon in deep bed filtration for efficient micropollutant removal. Water Res. 78 (2015), 9–17.
[17] Huang, L., Zhao, S., Wang, Z., Wu, J., Wang, J., Wang, S., In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J. Membr. Sci. 499 (2015), 269–281.
[18] Bessiere, Y., Fletcher, D.F., Bacchin, P., Numerical simulation of colloid dead-end filtration: effect of membrane characteristics and operating conditions on matter accumulation. J. Membr. Sci. 313 (2008), 52–59.
[19] Wang, R., Guan, S., Sato, A., Wang, X., Wang, Z., Yang, R., Hsiao, B.S., Chu, B., Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 446 (2013), 376–382.
[20] Etemadi, H., Yegani, R., Seyfollahi, M., The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Separ. Purif. Technol. 177 (2017), 350–362.
[21] Walter, J., Thajudeen, T., Süss, S., Segets, D., Peukert, W., New possibilities of accurate particle characterisation by applying direct boundary models to analytical centrifugation. Nanoscale 7 (2015), 6574–6587.
[22] Lee, H., Segets, D., Süß, S., Peukert, W., Chen, S., Pui, D.Y.H., Liquid filtration of nanoparticles through track-etched membrane filters under unfavorable and different ionic strength conditions: experiments and modeling. J. Membr. Sci. 524 (2017), 682–690.
[23] Yao, K.M., Habibian, M.T., O'Melia, C.R., Water and waste water filtration: concepts and applications. Environ. Sci. Technol. 5 (1971), 1105–1112.
[24] Rajagopalan, R., Tien, C., Trajectory analysis of deep‐bed filtration with the sphere‐in‐a‐cell porous media model. AIChE J. 2 (1976), 523–533.
[25] Tufenkji, N., Elimelech, M., Correlation equation for predicting single‐collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38 (2004), 529–536.
[26] Shen, C., Li, B., Huang, Y., Jin, Y., Kinetics of coupled primary and secondary minimum deposition of colloids under unfavorable chemical conditions. Environ. Sci. Technol. 41 (2007), 6976–6982.
[27] Hahn, M.W., Abadzic, D., O'Melia, C.R., Aquasols: on the role of secondary minima. Environ. Sci. Technol. 38 (2004), 5915–5924.
[28] Ryan, J.N., Elimelech, M., Colloid mobilization and transport in groundwater. Colloids Surf., A 107 (1996), 1–56.
[29] Baygents, J.C., Glynn, J.R., Albinger, O., Biesemeyer, B.K., Ogden, K.L., Arnold, R.G., Variation of surface charge density in monoclonal bacterial populations: implications for transport through porous media. Environ. Sci. Technol. 32 (1998), 1596–1603.
[30] Camesano, T.A., Logan, B.E., Influence of fluid velocity and cell concentration on the transport of motile and nomotile bacterias in porous media. Environ. Sci. Technol. 32 (1998), 1699–1708.
[31] Simoni, S.F., Harms, H., Bosma, T.N.P., Zehnder, A.J.B., Population heterogeneity affects transport of bacteria through sand columns at low flow rates. Environ. Sci. Technol. 32 (1998), 2100–2105.
[32] Bolster, C.H., Mills, A.L., Hornberger, G.M., Herman, J.S., Spatial distribution of bacteria experiments in intact cores. Water Resour. Res. 35 (1999), 1797–1807.
[33] Redman, J.A., Estes, M.K., Grant, S.B., Resolving macroscale and microscale heterogeneity in pathogen filtration. Colloids Surf., A 191 (2001), 57–70.
[34] Elimelech, M., O'Melia, C.R., Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6 (1990), 1153–1163.
[35] Litton, G.M., Olson, T.M., Particle size effects on colloid deposition kinetics: evidence of secondary minimum deposition. Colloids Surf., A 107 (1996), 273–283.
[36] Tufenkji, N., Elimelech, M., Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20 (2004), 10818–10828.
[37] Tufenkji, N., Elimelech, M., Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21 (2005), 841–852.
[38] Hahn, M.W., O'Melia, C.R., Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ. Sci. Technol. 38 (2004), 210–220.
[39] Shen, C.Y., Huang, Y.F., Li, B.G., Jin, Y., Predicting attachment efficiency of colloid deposition under unfavorable attachment conditions. Water Resour. Res. 46 (2010), 1–12.
[40] Li, X., Zhang, P., Lin, C.L., Johnson, W.P., Role of hydrodynamic drag on microsphere deposition and re‐entrainment in porous media under unfavorable conditions. Environ. Sci. Technol. 39 (2005), 4012–4020.
[41] Johnson, W.P., Tong, M., Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system. Environ. Sci. Technol. 40 (2006), 5015–5021.
[42] Tong, M., Johnson, W.P., Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol. 40 (2006), 7725–7731.
[43] Elimelech, M., Predicting collision efficiencies of colloidal particles in porous media. Water Res. 26 (1992), 1–8.
[44] Bai, R., Tien, C., Particle deposition under unfavorable surface interactions. J. Colloid Interface Sci. 218 (1999), 488–499.
[45] Torkzaban, S., Bradford, S. a., Walker, S.L., Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23 (2007), 9652–9660.
[46] Rastegar, V., Ahmadi, G., Babu, S.V., Filtration of aqueous colloidal ceria slurries using fibrous filters – an experimental and simulation study. Separ. Purif. Technol. 176 (2017), 231–242.
[47] Hosseini, S.A., Tafreshi, H.V., 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol. 201 (2010), 153–160.
[48] Happel, J., Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J. 4 (1958), 197–201.
[49] Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14 (1959), 527–532.
[50] Tien, C., Principles of Filtration. first ed., 2012, Elsevier, Oxford, UK.
[51] Ryan, J.N., Elimelech, M., Baeseman, J.L., Magelky, R.D., Silica-coated titania and zirconia colloids for subsurface transport field experiments. Environ. Sci. Technol. 34 (2000), 2000–2005.
[52] Cleasby, J.L., Pontius, F.W., (eds.) Water Quality and Treatment, fourth ed., 1990, McGraw-Hill, New York.
[53] Regula, C., Carretier, E., Wyart, Y., Gésan-Guiziou, G., Vincent, A., Boudot, D., Moulin, P., Chemical cleaning/disinfection and ageing of organic UF membranes: a review. Water Res. 56 (2014), 325–365.
[54] Logan, B.E., Hilbert, T.A., Arnold, R.G., Removal of bacteria in laboratory filters–models and experiments. Water Res. 27 (1993), 955–962.
[55] Lee, H., Yook, S.J., Deposition velocity of particles in charge equilibrium onto a flat plate in parallel airflow under the influence of simultaneous electrophoresis and thermophoresis. J. Aerosol Sci. 67 (2014), 166–176.
[56] Li, A., Ahmadi, G., Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16 (1992), 209–226.
[57] Lin, S., Wiesner, M.R., Theoretical investigation on the interaction between a soft particle and a rigid surface. Chem. Eng. J. 191 (2012), 297–305.
[58] Gregory, J., Approximate expressions for retarded van der Waals interaction. J. Colloid Interface Sci. 83 (1981), 138–145.
[59] Gregory, J., Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 51 (1975), 44–51.
[60] Lin, S., Wiesner, M.R., Exact analytical expressions for the potential of electrical double layer interactions for a sphere-plate system. Langmuir 26 (2010), 16638–16641.
[61] Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N., Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44 (2010), 6532–6549.
[62] Ryan, J.N., Gschwend, P.M., Effects of ionic strength and flow rate on colloid release: relating kinetics to intersurface potential energy. J. Colloid Interface Sci. 164 (1994), 21–34.
[63] Bradford, S.A., Wang, Y., Torkzaban, S., Šimůnek, J., Modeling the release of E. coli D21g with transients in water content. Water Resour. Res. 51 (2005), 3303–3316.
[64] Usui, S., Yamasaki, T., Adhesion of mercury and glass in aqueous solutions. J. Colloid Interface Sci. 29 (1969), 629–638.
[65] Frens, G., Overbeek, J.T.H.G., Repeptization and the theory of electrocratic colloids. J. Colloid Interface Sci. 38 (1972), 376–387.
[66] Israelachvili, J.N., Intermolecular and Surface Forces. third ed., 2011, Academic Press, San Diego.
[67] Yook, S., Fissan, H., Asbach, C., Hyeun, J., Wang, J., Yan, P., Pui, D.Y.H., Evaluation of protection schemes for extreme ultraviolet lithography (EUVL) masks against top–down aerosol flow., 38, 2007, 211–227.
[68] Lee, H., Yook, S.-J., Han, S.Y., The effects of simultaneous electrophoresis and thermophoresis on particulate contamination of an inverted EUVL photomask surface in parallel airflow. Eur. Phys. J. Plus. 127 (2012), 122–133.
[69] Lee, H., Yook, S., Lee, K., Deposition of charged particles on a flat plate in parallel flow in the presence of an electric field. IEEE Trans. Semicond. Manuf. 27 (2014), 287–293.
[70] Iwasaki, T., Some notes on sand filtration. J. Am. Water Work. Assoc. 29 (1937), 1591–1602.
[71] Choo, C., Tien, C., Hydrosol deposition in fibrous beds. Sep. Technol. 1 (1991), 122–131.
[72] Vaidyanathan, R., Tien, C., Hydrosol deposition in granular beds-An experimental study. Chem. Eng. Commun. 81 (1989), 123–144.
[73] Elimelech, M., Predicting collision efficiencies of colloidal particles in porous media. Water Res. 26 (1992), 1–8.
[74] Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J., Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38 (2002), 1–12.
[75] Lee, K.W., Liu, B.Y.H., Lee, K.W., Liu, B.Y.H., Experimental study of aerosol filtration by fibrous filters experimental study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1 (1982), 35–46.
[76] Huang, S., Chen, C., Kuo, Y., Lai, C., Mckay, R., Chen, C., Factors affecting filter penetration and quality factor of particulate respirators. Aerosol Air Qual. Res. 13 (2013), 162–171.
[77] Bradford, S.A., Torkzaban, S., Walker, S.L., Coupling of physical and chemical mechanisms of colloid straining in saturated media. Water Res. 41 (2007), 3012–3024.
[78] Bradford, S.A., Kim, H.N., Haznedaroglu, B.Z., Torkzaban, S., Walker, S.L., Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ. Sci. Technol. 43 (2009), 6996–7002.
[79] Phenrat, T., Song, J.E., Cisneros, C.M., Schoenfelder, D.P., Tilton, R.D., Lowry, G.V., Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ. Sci. Technol. 44 (2010), 4531–4538.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorKim, Seong Chan
1.Univ Minnesota, Particle Technol Lab, Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen CUHKSZ, Shenzhen 518172, Guangdong, Peoples R China
Recommended Citation
GB/T 7714
Lee, Handol,Kang, Seungkoo,Kim, Seong Chanet al. Deposition and reentrainment of colloidal particles in disordered fibrous filters under chemically and physically unfavorable conditions[J]. JOURNAL OF MEMBRANE SCIENCE,2019.
APA Lee, Handol, Kang, Seungkoo, Kim, Seong Chan, & Pui, David Y. H. (2019). Deposition and reentrainment of colloidal particles in disordered fibrous filters under chemically and physically unfavorable conditions. JOURNAL OF MEMBRANE SCIENCE.
MLA Lee, Handol,et al."Deposition and reentrainment of colloidal particles in disordered fibrous filters under chemically and physically unfavorable conditions".JOURNAL OF MEMBRANE SCIENCE (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Lee, Handol]'s Articles
[Kang, Seungkoo]'s Articles
[Kim, Seong Chan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Lee, Handol]'s Articles
[Kang, Seungkoo]'s Articles
[Kim, Seong Chan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Lee, Handol]'s Articles
[Kang, Seungkoo]'s Articles
[Kim, Seong Chan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.