Details of Research Outputs

TitleImproving IoT Data Quality in Mobile Crowd Sensing: A Cross Validation Approach
Author (Name in English or Pinyin)
Luo, Tie1; Huang, Jianwei2,3; Kanhere, Salil S.4; Zhang, Jie5; Das, Sajal K.6
Date Issued2019-06-01
Source PublicationIEEE Internet of Things Journal
ISSN2327-4662
DOI10.1109/JIOT.2019.2904704
Indexed BySCIE
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 6 期: 3 页: 5651-5664
References
[1] T. Luo, S. S. Kanhere, J. Huang, S. K. Das, and F. Wu, "Sustainable incentives for mobile crowdsensing: Auctions, lotteries, and trust and reputation systems," IEEE Commun. Mag., vol. 55, no. 3, pp. 68-74, Mar. 2017.
[2] H. Jin et al., "Thanos: Incentive mechanism with quality awareness for mobile crowd sensing," IEEE Trans. Mobile Comput., to be published.
[3] T. Luo, H.-P. Tan, and L. Xia, "Profit-maximizing incentive for participatory sensing," in Proc. IEEE INFOCOM, 2014, pp. 127-135.
[4] G. Radanovic and B. Faltings, "A robust Bayesian truth serum for nonbinary signals," in Proc. AAAI, 2013, pp. 833-839.
[5] D. Prelec, "A Bayesian truth serum for subjective data," Science, vol. 306, no. 5695, pp. 462-466, Oct. 2004.
[6] T. Luo, S. S. Kanhere, H.-P. Tan, F. Wu, and H. Wu, "Crowdsourcing with Tullock contests: A new perspective," in Proc. IEEE INFOCOM, 2015, pp. 2515-2523.
[7] E. Kamar and E. Horvitz, "Incentives and truthful reporting in consensus-centric crowdsourcing," Microsoft Res., Albuquerque, NM, USA, Rep. MSR-TR-2012-16, 2012.
[8] B. Kantarci, P. M. Glasser, and L. Foschini, "Crowdsensing with social network-aided collaborative trust scores," in Proc. IEEE Globecom, 2015, pp. 1-6.
[9] C. Wu, T. Luo, F. Wu, and G. Chen, "EndorTrust: An endorsement-based reputation system for trustworthy and heterogeneous crowdsourcing," in Proc. IEEE Globecom, 2015, pp. 1-6.
[10] L. Zeynalvand, J. Zhang, T. Luo, and S. Chen, "MASA: Multi-agent subjectivity alignment for trustworthy Internet of Things," in Proc. 21st Int. Conf. Inf. Fusion (FUSION), 2018, pp. 2013-2020.
[11] K. L. Huang, S. S. Kanhere, and W. Hu, "Are you contributing trustworthy data? The case for a reputation system in participatory sensing," in Proc. ACM MSWiM, 2010, pp. 14-22.
[12] H. Amintoosi and S. S. Kanhere, "A trust framework for social participatory sensing systems," in Proc. Mobiquitous, 2012, pp. 237-249.
[13] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, "On truth discovery in social sensing: A maximum likelihood estimation approach," in Proc. ACM/IEEE IPSN, 2012, pp. 233-244.
[14] E. Davami and G. Sukthankar, "Improving the performance of mobile phone crowdsourcing applications," in Proc. AAMAS, 2015, pp. 145-153.
[15] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, "SHIELD: A data verification framework for participatory sensing systems," in Proc. ACM Conf. Security Privacy Wireless Mobile Netw. (WiSec), 2015, Art. no. 16.
[16] P. Michelucci and J. L. Dickinson, "The power of crowds," Science, vol. 351, no. 6268, pp. 32-33, 2015.
[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, U.K.: MIT Press, 1998.
[18] T. Luo, S. S. Kanhere, and H.-P. Tan, "SEW-ing a simple endorsement Web to incentivize trustworthy participatory sensing," in Proc. IEEE SECON, 2014, pp. 636-644.
[19] Y. Zhan, Y. Xia, Y. Liu, F. Li, and Y. Wang, "Incentive-aware timesensitive data collection in mobile opportunistic crowdsensing," IEEE Trans. Veh. Technol., vol. 66, no. 9, pp. 7849-7861, Sep. 2017.
[20] L. Duan et al., "Motivating smartphone collaboration in data acquisition and distributed computing," IEEE Trans. Mobile Comput., vol. 13, no. 10, pp. 2320-2333, Oct. 2014.
[21] C.-K. Tham and T. Luo, "Quality of contributed service and market equilibrium for participatory sensing," IEEE Trans. Mobile Comput., vol. 14, no. 4, pp. 829-842, Apr. 2015.
[22] H. Jin, L. Su, and K. Nahrstedt, "Theseus: Incentivizing truth discovery in mobile crowd sensing systems," in Proc. ACM MobiHoc, 2017, Art. no. 1.
[23] T. Luo and L. Zeynalvand, "Reshaping mobile crowd sensing using cross validation to improve data credibility," in Proc. IEEE Globecom, Dec. 2017, pp. 1-7.
[24] C. List, "Social choice theory," in The Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed. Stanford, CA, USA: Stanford Univ., 2013.
[25] J. Bartholdi, C. A. Tovey, and M. A. Trick, "Voting schemes for which it can be difficult to tell who won the election," Soc. Choice Welfare, vol. 6, no. 2, pp. 157-165, 1989.
[26] T. Luo, S. K. Das, H. P. Tan, and L. Xia, "Incentive mechanism design for crowdsourcing: An all-pay auction approach," ACM Trans. Intell. Syst. Technol., vol. 7, no. 3, pp. 1-26, 2016.
[27] M. Holmberg and T. Artursson, "Drift compensation, standards, and calibration methods," in Handbook of Machine Olfaction: Electronic Nose Technology. Weinheim, Germany: Wiley, 2002, pp. 325-346.
[28] L. Kugler, "Why GPS spoofing is a threat to companies, countries," Commun. ACM, vol. 60, no. 9, pp. 18-19, Sep. 2017.
[29] M. Harris. (Sep. 2015). Researcher Hacks Self-Driving Car Sensors. [Online]. Available: https://spectrum.ieee.org/cars-that-think/ transportation/self-driving/researcher-hacks-selfdriving-car-sensors
[30] N. C. Moore. (Mar. 2017). Scientists Can Hack Sensors in Cars and Phones With a $5 Speaker. [Online]. Available: https://www.futurity.org/ sensors-accelerometer-hacking-sound-1379602-2/
[31] Amazon Mechanical Turk. Accessed: Apr. 2, 2018. [Online]. Available: http://www.mturk.com
[32] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming: Modeling and Theory. Philadelphia, PA, USA: SIAM Math. Program. Soc., 2009.
[33] TIBCO Statistica. Compare Distribution Tables. Accessed: Apr. 2, 2018. [Online]. Available: http://www.statsoft.com/Textbook/Distribution-Tables
[34] Bessel's Correction. Accessed: Apr. 2, 2018. [Online]. Available: https://en.wikipedia.org/wiki/Bessel'scorrection
[35] V. Kuleshov and D. Precup, "Algorithms for the multi-armed bandit problem," J. Mach. Learn. Res., vol. 1, pp. 1-48, Oct. 2000.
[36] T. Luo, S. S. Kanhere, S. K. Das, and H.-P. Tan, "Incentive mechanism design for heterogeneous crowdsourcing using all-pay contests," IEEE Trans. Mobile Comput., vol. 15, no. 9, pp. 2234-2246, Sep. 2016.
[37] T. Luo, S. S. Kanhere, S. K. Das, and H.-P. Tan, "Optimal prizes for all-pay contests in heterogeneous crowdsourcing," in Proc. IEEE Int. Conf. Mobile Ad Hoc Sensor Syst. (MASS), 2014, pp. 136-144.
[38] X. Zhang et al., "Incentives for mobile crowd sensing: A survey," IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 54-67, 1st Quart., 2016.
[39] F. Restuccia, S. K. Das, and J. Payton, "Incentive mechanisms for participatory sensing: Survey and research challenges," ACM Trans. Sensor Netw., vol. 12, no. 2, pp. 1-13, May 2016.
[40] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, "A survey of incentive techniques for mobile crowd sensing," IEEE Internet Things J., vol. 2, no. 5, pp. 370-380, Oct. 2015.
[41] J.-C. Herrera et al., "Evaluation of traffic data obtained via GPSenabled mobile phones: The Mobile Century experiment," Transp. Res. C, vol. 18, no. 3, pp. 568-583, 2010.
[42] Dan Work. Accessed: Apr. 15, 2018. [Online]. Available: https://my.vanderbilt.edu/danwork/open-data-2/
[43] Mobile Century Data. Accessed: Apr. 15, 2018. [Online]. Available: http://traffic.berkeley.edu/project/downloads/mobilecenturydata
[44] A. Hobson, Concepts in Statistical Mechanics. New York, NY, USA: Gordon and Breach, 1971.
Citation statistics
Cited Times:55[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/566
CollectionSchool of Science and Engineering
Corresponding AuthorLuo, Tie
Affiliation
1.ASTAR, Inst Infocomm Res, Singapore, Singapore
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen, Peoples R China
3.Chinese Univ Hong Kong , Dept Informat Engn, Hong Kong, Peoples R China
4.Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
5.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
6.Missouri Univ Sci & Technol, Dept Comp Sci, Rolla, MO 65409 USA
Recommended Citation
GB/T 7714
Luo, Tie,Huang, Jianwei,Kanhere, Salil S.et al. Improving IoT Data Quality in Mobile Crowd Sensing: A Cross Validation Approach[J]. IEEE Internet of Things Journal,2019.
APA Luo, Tie, Huang, Jianwei, Kanhere, Salil S., Zhang, Jie, & Das, Sajal K. (2019). Improving IoT Data Quality in Mobile Crowd Sensing: A Cross Validation Approach. IEEE Internet of Things Journal.
MLA Luo, Tie,et al."Improving IoT Data Quality in Mobile Crowd Sensing: A Cross Validation Approach".IEEE Internet of Things Journal (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Luo, Tie]'s Articles
[Huang, Jianwei]'s Articles
[Kanhere, Salil S.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Luo, Tie]'s Articles
[Huang, Jianwei]'s Articles
[Kanhere, Salil S.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Luo, Tie]'s Articles
[Huang, Jianwei]'s Articles
[Kanhere, Salil S.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.