Details of Research Outputs

TitleA skyrmion-based spin-torque nano-oscillator with enhanced edge
Author (Name in English or Pinyin)
Feng, Youhua1; Xia, Jing2; Qiu, Lei1; Cai, Xinran2,3; Shen, Laichuan2; Morvan, Francois J.4; Zhang, Xichao2; Zhou, Yan2; Zhao, Guoping1,4,5
Date Issued2019-07-18
Source PublicationJOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
ISSN0304-8853
DOI10.1016/j.jmmm.2019.165610
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 491
References
[1] Slonczewski, J.C., Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159 (1996), L1–L7, 10.1016/0304-8853(96)00062-5.
[2] Berger, L., Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 54, 1996, 9353, 10.1103/PhysRevB.54.9353.
[3] Sankey, J.C., Cui, Y., Sun, J.Z., Slonczewski, J.C., Buhrman, R.A., Ralph, D.C., Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys. 4 (2008), 67–71, 10.1038/nphys783.
[4] Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrman, R.A., Ralph, D.C., Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425 (2003), 380–383, 10.1038/nature01967.
[5] Rippard, W.H., Pufall, M.R., Kaka, S., Russek, S.E., Silva, T.J., Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett., 92, 2004, 027201, 10.1103/PhysRevLett. 92.027201.
[6] Krivorotov, I.N., Emley, N.C., Sankey, J.C., Kiselev, S.I., Ralph, D.C., Buhrman, R.A., Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 14 (2005), 228–231, 10.1126/science.1105722.
[7] Deac, A.M., Fukushima, A., Kubota, H., Maehara, H., Suzuki, Y., Yuasa, S., Nagamine, Y., Tsunekawa, K., Djayaprawira, D.D., Watanabe, N., Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nat. Phys. 4 (2008), 803–809, 10.1038/nphys1036.
[8] Georges, B., Grollier, J., Cros, V., Fert, A., Origin of the spectral linewidth in nonlinear spin-transfer oscillators based on MgO tunnel junctions. Phys. Rev. B, 80, 2009, 060404(R), 10.1103/PhysRevB.80.060404.
[9] Houssameddine, D., Florez, S.H., Katine, J.A., Michel, J.-P., Ebels, U., Mauri, D., Ozatay, O., Delaet, B., Viala, B., Folks, L., Terris, B.D., Cyrille, M.-C., Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions. Appl. Phys. Lett., 93, 2008, 022505, 10.1063/1.2956418.
[10] Silvaw, T.J., Rippard, W.H., Developments in nano-oscillators based upon spin-transfer point-contact devices. J. Magn. Magn. Mater. 320 (2008), 1260–1271, 10.1016/j.jmmm.2007.12.022.
[11] Hoefer, M.A., Ablowitz, M.J., Ilan, B., Pufall, M.R., Silva, T.J., Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. Phys. Rev. Lett., 95, 2005, 267206, 10.1103/PhysRevLett. 95.267206.
[12] Rippard, W.H., Pufall, M.R., Kaka, S., Silva, T.J., Russek, S.E., Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B, 70, 2004, 100406(R), 10.1103/PhysRevB.70.100406.
[13] Zeng, Z., Amiri, P.K., Krivorotov, I.N., Zhao, H., Finocchio, G., Wang, J.-P., Katine, J.A., Huai, Y., Langer, J., Galatsis, K., Wang, K.L., Jiang, H., High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy. ACS Nano 6:7 (2012), 6115–6121, 10.1021/nn301222v.
[14] Grollier, J., Cros, V., Fert, A., Synchronization of spin-transfer oscillators driven by stimulated microwave currents. Phys. Rev. B, 73, 2006, 060409(R), 10.1103/PhysRevB.73.060409.
[15] Mancoff, F.B., Rizzo, N.D., Engel, B.N., Tehrani, S., Phase-locking in double-point-contact spin-transfer devices. Nature 437 (2005), 393–395, 10.1038/nature04036.
[16] Lehndorff, R., Bürgler, D.E., Schneider, C.M., Celinski, Z., Injection locking of the gyrotropic vortex motion in a nanopillar. Appl. Phys. Lett., 97, 2010, 142503, 10.1063/1.3498009.
[17] Ruotolo, A., Cros, V., Georges, B., Dussaux, A., Grollier, J., Deranlot, C., Guillemet, R., Bouzehouane, K., Fusil, S., Fert, A., Phase-locking of magnetic vortices mediated by antivortices. Nat. Nanotech. 4 (2009), 528–532, 10.1038/nnano.2009.143.
[18] Pribiag, V.S., Krivorotov, I.N., Fuchs, G.D., Braganca, P.M., Ozatay, O., Sankey, J.C., Ralph, D.C., Buhrman, R.A., Magnetic vortex oscillator driven by d.c. spin-polarized current. Nat. Phys. 3 (2007), 498–503, 10.1038/nphys619.
[19] Dussaux, A., Georges, B., Grollier, J., Cros, V., Khvalkovskiy, A.V., Fukushima, A., Konoto, M., Kubota, H., Yakushiji, K., Yuasa, S., Zvezdin, K.A., Ando, K., Fert, A., Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nat. Commun., 1, 2010, 8, 10.1038/ncomms1006.
[20] Nagaosa, N., Tokura, Y., Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech., 8, 2013, 899, 10.1038/nnano.2013.243.
[21] Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8 (2013), 839–844, 10.1038/nnano.2013.210.
[22] Chui, C.P., Zhou, Y., Skyrmion stability in nanocontact spin-transfer oscillators. AIP Adv., 5, 2015, 097126, 10.1063/1.4930904.
[23] Zhou, Y., Magnetic skyrmions: intriguing physics and new spintronic device concepts. Natl. Sci. Rev. 6 (2018), 1–3, 10.1093/nsr/nwy109.
[24] Zhou, Y., Iacocca, E., Awad, A.A., Dumas, R.K., Zhang, F.C., Braun, H.B., Åkerman, J., Dynamically stabilized magnetic skyrmions. Nat. Commun., 6, 2015, 8193, 10.1038/ncomms9193.
[25] Dzyaloshinsky, I., A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4 (1958), 241–255, 10.1016/0022-3697(58)90076-3.
[26] Moriya, T., Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120 (1960), 91–98, 10.1103/PhysRev. 120.91.
[27] Crépieux, A., Lacroix, C., Dzyaloshinsky-Moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182 (1998), 341–349, 10.1016/S0304-8853(97)01044-5.
[28] Tonomura, A., Yu, X., Yanagisawa, K., Matsuda, T., Onose, Y., Kanazawa, N., Park, H.S., Tokura, Y., Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett. 12 (2012), 1673–1677, 10.1021/nl300073m.
[29] Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., Bön, P., Skyrmion lattice in a chiral magnet. Science 323 (2009), 915–919, 10.1126/science.1166767.
[30] Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R.A., Everschor, K., Garst, M., Rosch, A., Spin transfer torques in MnSi at ultralow current densities. Science 330 (2010), 1648–1651, 10.1126/science.1195709.
[31] Yu, X.Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W.Z., Ishiwata, S., Matsui, Y., Tokura, Y., Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10 (2011), 106–109, 10.1038/nmat2916.
[32] Huang, S.X., Chien, C.L., Extended skyrmion phase in epitaxial FeGe (111) thin films. Phys. Rev. Lett., 108, 2012, 267201, 10.1103/PhysRevLett. 108.267201.
[33] Yu, X.Z., Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N., Tokura, Y., Real-space observation of a two-dimensional skyrmion crystal. Nature 465 (2010), 901–904, 10.1038/nature09124.
[34] Münzer, W., Neubauer, A., Adams, T., Mühlbauer, S., Franz, C., Jonietz, F., Georgii, R., Böni, P., Pedersen, B., Schmidt, M., Rosch, A., Pfleiderer, C., Skyrmion lattice in the doped semiconductor Fe1-xCoxSi. Phys. Rev. B, 81, 2010, 041203(R), 10.1103/PhysRevB.81.041203.
[35] Seki, S., Yu, X.Z., Ishiwata, S., Tokura, Y., Observation of skyrmions in a multiferroic material. Science 336 (2012), 198–201, 10.1126/science.1214143.
[36] Di, K., Zhang, V.L., Lim, H.S., Ng, S.C., Kuok, M.H., Yu, J., Yoon, J., Qiu, X., Yang, H., Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett., 114, 2015, 047201, 10.1103/PhysRevLett. 114.047201.
[37] Hrabec, A., Porter, N.A., Wells, A., Benitez, M.J., Burnell, G., McVitie, S., McGrouther, D., Moore, T.A., Marrows, C.H., Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B, 90, 2014, 020402(R), 10.1103/PhysRevB.90.020402.
[38] Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S., Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7 (2011), 713–718, 10.1038/nphys2045.
[39] Nembach, H.T., Shaw, J.M., Weiler, M., Jué, E., Silva, T.J., Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii-Moriya interaction in metal films. Nat. Phys. 11 (2015), 825–829, 10.1038/nphys3418.
[40] Zhang, S.F., Wang, J.B., Zheng, Q., Zhu, Q., Liu, X., Chen, S., Jin, C., Liu, Q., Jia, C., Xue, D., Current-induced magnetic skyrmions oscillator. New J. Phys., 17, 2015, 023061, 10.1088/1367-2630/17/2/023061.
[41] Garcia-Sanchez, F., Sampaio, J., Reyren, N., Cros, V., Kim, J.-V., A skyrmion-based spin-torque nano-oscillator. New J. Phys., 18, 2016, 075011, 10.1088/1367-2630/18/7/075011.
[42] Shen, L., Xia, J., Zhao, G., Zhang, X., Ezawa, M., Tretiakov, O.A., Liu, X., Zhou, Y., Spin torque nano-oscillators based on antiferromagnetic skyrmions. Appl. Phys. Lett., 114, 2019, 042402, 10.1063/1.5080302.
[43] Dai, Y., Wang, H., Yang, T., Ren, W., Zhang, Z., Flower-like dynamics of coupled Skyrmions with dual resonant modes by a single-frequency microwave magnetic field. Sci. Rep., 4, 2014, 6153, 10.1038/srep06153.
[44] Wang, H., Dai, Y., Yang, T., Ren, W., Zhang, Z., Dual-frequency microwave-driven resonant excitations of skyrmions in nanoscale magnets. RSC Adv., 4, 2014, 62179, 10.1039/c4ra09670c.
[45] Jiang, W., Xia, J., Zhang, X., Song, Y., Ma, C., Fangohr, H., Zhao, G., Liu, X., Zhao, W., Zhou, Y., Dynamics of magnetic skyrmion clusters driven by spin-polarized current with a spatially varied polarization. IEEE Magn. Lett., 9, 2018, 3102905, 10.1109/LMAG.2018.2825280.
[46] Wintz, S., Bunce, C., Neudert, A., Körner, M., Strache, T., Buhl, M., Erbe, A., Gemming, S., Raabe, J., Quitmann, C., Fassbender, J., Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements. Phys. Rev. Lett., 110, 2013, 177201, 10.1103/PhysRevLett. 110.177201.
[47] Phatak, C., Petford-Long, A.K., Heinonen, O., Direct observation of unconventional topological spin structure in coupled magnetic discs. Phys. Rev. Lett., 108, 2012, 067205, 10.1103/PhysRevLett. 108.067205.
[48] Tchoe, Y., Han, J.H., Skyrmion generation by current. Phys. Rev. B, 85, 2012, 174416, 10.1103/PhysRevB.85.174416.
[49] Romming, N., Hanneken, C., Menzel, M., Bickel, J.E., Wolter, B., von Bergmann, K., Kubetzka, A., Wiesendanger, R., Writing and deleting single magnetic skyrmions. Science 341 (2013), 636–639, 10.1126/science.1240573.
[50] Hrabec, A., Sampaio, J., Belmeguenai, M., Gross, I., Weil, R., Chérif, S.M., Stashkevich, A., Jacques, V., Thiaville, A., Rohart, S., Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun., 8, 2017, 15765, 10.1038/ncomms15765.
[51] M.J. Donahue, D. Porter, OOMMF (NIST) (https://math.nist.gov/oommf).
[52] OOMMF package for Dzyaloshinsky-Moriya interaction (https://www.lps.u-psud.fr/spip.php?article2252).
[53] OOMMF, Extension for current-induced domain wall motion developed by IBM Research in Zurich (https://www.zurich.ibm.com/st/magnetism/spintevolve.html).
[54] Fert, A., Cros, V., Sampaio, J., Skyrmions on the track. Nat. Nanotech. 8 (2013), 152–156, 10.1038/nnano.2013.29.
[55] Thiele, A.A., Steady state of motion of Magnetic Domain. Phys. Rev. Lett. 30 (1973), 230–233, 10.1103/PhysRevLett. 30.230.
[56] Zhang, X.C., Zhao, G.P., Fangohr, H., Liu, J.P., Xia, W.X., Xia, J., Morvan, F.J., Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep., 5, 2014, 7643, 10.1038/srep07643.
[57] Li, X., Zhang, Z., Jin, Q.Y., Liu, Y., Domain nucleation mediated spin-transfer switching in magnetic nanopillars with perpendicular anisotropy. Appl. Phys. Lett., 92, 2008, 122502, 10.1063/1.2897298.
[58] Li, X., Zhang, Z., Jin, Q.Y., Liu, Y., Spin-torque-induced switching in a perpendicular GMR nanopillar with a soft core inside the free layer. New J. Phys., 11, 2009, 023027, 10.1088/1367-2630/11/2/023027.
[59] Lai, P., Zhao, G.P., Tang, H., Ran, N., Wu, S.Q., Xia, J., Zhang, X.C., Zhou, Y., An improved racetrack structure for transporting a skyrmion. Sci. Rep., 7, 2017, 45330, 10.1038/srep45330.
[60] Fook, H.T., Gan, W.L., Lew, W.S., Gateable skyrmion transport via field-induced potential barrier modulation. Sci. Rep., 6, 2016, 21099, 10.1038/srep21099.
[61] M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet, C. Moutafis, J.S. Friedman, Conservative Skyrmion Logic System, Preprint at http://arXiv.org/abs/1806.10337 (2018).
[62] Purnama, I., Gan, W.L., Wong, D.W., Lew, W.S., Guided current-induced skyrmion motion in 1D potential wall. Sci. Rep., 5, 2015, 10620, 10.1038/srep10620.
Citation statistics
Cited Times:35[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/618
CollectionSchool of Science and Engineering
Corresponding AuthorZhao, Guoping
Affiliation
1.Sichuan Normal Univ, Coll Phys & Elect Engn, Chengdu 610101, Sichuan, Peoples R China
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
3.Shenzhen Univ, Coll Phys & Photoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
4.Chinese Acad Sci, Key Lab Magnet Mat & Devices, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
5.Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
Recommended Citation
GB/T 7714
Feng, Youhua,Xia, Jing,Qiu, Leiet al. A skyrmion-based spin-torque nano-oscillator with enhanced edge[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2019.
APA Feng, Youhua., Xia, Jing., Qiu, Lei., Cai, Xinran., Shen, Laichuan., .. & Zhao, Guoping. (2019). A skyrmion-based spin-torque nano-oscillator with enhanced edge. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS.
MLA Feng, Youhua,et al."A skyrmion-based spin-torque nano-oscillator with enhanced edge".JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Feng, Youhua]'s Articles
[Xia, Jing]'s Articles
[Qiu, Lei]'s Articles
Baidu academic
Similar articles in Baidu academic
[Feng, Youhua]'s Articles
[Xia, Jing]'s Articles
[Qiu, Lei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Feng, Youhua]'s Articles
[Xia, Jing]'s Articles
[Qiu, Lei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.