Details of Research Outputs

TitleParameter estimation of discrete-time sinusoidal signals: A nonlinear control approach
Author (Name in English or Pinyin)
Jiang, Teng1; Xu, Dabo1; Chen, Tianshi2; Sheng, Andong1
Date Issued2019-08-08
Source PublicationAUTOMATICA
ISSN0005-1098
DOI10.1016/j.automatica.2019.108510
Funding Project国家自然科学基金项目
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 109
References
[1] Ackleh, A.S., Allen, E.J., Kearfott, R.B., Seshaiyer, P., Classical and modern numerical analysis: Theory, methods and practice. 2009, CRC Press.
[2] Angeli, D., Intrinsic robustness of global asymptotic stability. Systems & Control Letters 38:4–5 (1999), 297–307.
[3] Besançon, G., De León-morales, J., Huerta-Guevara, O., On adaptive observers for state affine systems. International Journal of Control 79:6 (2006), 581–591.
[4] Bittanti, S., Savaresi, S.M., On the parameterization and design of an extended Kalman filter frequency tracker. IEEE Transactions on Automatic Control 45:9 (2000), 1718–1724.
[5] Candès, E.J., Fernandez-Granda, C., Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics 67:6 (2014), 906–956.
[6] Carnevale, D., Astolfi, A., Semi-global multi-frequency estimation in the presence of deadzone and saturation. IEEE Transactions on Automatic Control 59:7 (2012), 1913–1918.
[7] Chen, B., Pin, G., Ng, W.M., Hui, S.Y., Parisini, T., An adaptive-observer-based robust estimator of multi-sinusoidal signals. IEEE Transactions on Automatic Control 63:6 (2018), 1618–1631.
[8] Fedele, G., Ferrise, A., Frascino, D., Multi-sinusoidal signal estimation by an adaptive SOGI-filters bank. Proceedings of the 15th IFAC sysposlum on system identification, 2009, 402–407.
[9] Green, M., Moore, J.B., Persistence of excitation in linear systems. Systems & Control Letters 7 (1986), 351–360.
[10] Hou, M., Estimation of sinusoidal frequencies and amplitudes using adaptive identifier and observer. IEEE Transactions on Automatic Control 52:3 (2007), 493–499.
[11] Hou, M., Parameter identification of sinusoids. IEEE Transactions on Automatic Control 57:2 (2012), 467–472.
[12] Jiang, Z.P., Wang, Y., A converse Lyapunov theorem for discrete-time systems with disturbances. Systems & Control Letters 45:1 (2002), 49–58.
[13] Kay, S.M., Modern spectral estimation: Theory and applications. 1988, Prentice-Hall, Englewood Cliffs, NJ, USA.
[14] Kay, S.M., A fast and accurate single frequency estimator. IEEE Transactions on Acoustics, Speech and Signal Processing 37:12 (1989), 1987–1990.
[15] Kay, S.M., Marple, S.L., Spectrum analysis - a modern perspective. Proceedings of IEEE 69:11 (1981), 1380–1419.
[16] LaSalle, J.P., The stability and control of discrete processes. 1986, Springer, New York.
[17] Marino, R., Tomei, P., Global estimation of n unknown frequencies. IEEE Transactions on Automatic Control 47:8 (2002), 1324–1328.
[18] Na, J., Yang, J., Wu, X., Guo, Y., Robust adaptive parameter estimation of sinusoidal signals. Automatica 53 (2015), 376–384.
[19] Nešić, D., Teel, A.R., Changing supply functions in input to state stable systems: The discrete-time case. IEEE Transactions on Automatic Control 46:6 (2001), 960–962.
[20] Paulraj, A., Roy, R., Kailath, T., A subspace rotation approach to signal paramter estimation. Proceedings of the IEEE 74:7 (1986), 1044–1046.
[21] Quinn, B.G., Estimating frequency by interpolation using Fourier coefficients. IEEE Transactions on Signal Processing 42:5 (1994), 1264–1268.
[22] Quinn, B.G., Hannan, E.J., The estimation and tracking of frequency. 2001, Cambridge University Press.
[23] Rife, D.C., Boorstyn, R.R., Single-tone parameter estimation from descrete-time observations. IEEE Transactions on Information Theory IT-20:5 (1974), 591–598.
[24] Rugh, W.J., Linear system theory. 1996, Printice-Hall.
[25] Sastry, S., Bodson, M., Adaptive control: Stability, convergence, and robustness. 1989, Printice-Hall.
[26] Schmidt, R.O., Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation AP-34:3 (1986), 276–280.
[27] So, H.C., Chan, F.K.W., A generalized weighted linear predictor frequency estimation approach for a complex sinusoid. IEEE Transactions on Signal processing 54:4 (2006), 1304–1315.
[28] Stoica, P., Li, H., Li, J., Amplitude estimation of sinusoidal signals: Survey, new results, and an application. IEEE Transactions on Signal Processing 48:2 (2000), 338–352.
[29] Stoica, P., Moses, R.L., Friedlander, B., Söderström, T., Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements. IEEE Transactions on Acoustics, Speech and Signal Processing 37:3 (1989), 378–392.
[30] Tang, G., Bhaskar, B.N., Shah, P., Recht, B., Compressed sensing off the grid. IEEE Transactions on Information Theory 59:11 (2013), 7465–7490.
[31] Tedesco, F., Casavola, A., Fedele, G., Unbiased estimation of sinusoidal signal parameters via discrete-time frequency-locked-loop filters. IEEE Transactions on Automatic Control 62:3 (2017), 1484–1490.
[32] Trapero, J.R., Sira-Ramírez, H., Batlle, V.F., An algebraic frequency estimator for a biased and noisy sinusoidal signal. Signal Processing 87 (2007), 1188–1201.
[33] Tretter, S.A., Estimating the frequency of a noisy sinusoid by linear regression. IEEE Transactions on Information Theory IT-31:6 (1985), 832–835.
[34] Xia, X., Global frequency estimation using adaptive identifiers. IEEE Transactions on Automatic Control 47:7 (2002), 1188–1193.
[35] Xu, D., Constructive nonlinear internal models for global robust output regulation and application. IEEE Transactions on Automatic Control 63:5 (2018), 1523–1530.
[36] Yang, Z., Li, J., Stoica, P., Xie, L., Sparse methods for direction-of-arrival estimation. Academic Press Library in Signal Processing 7 (2018), 509–581.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/635
CollectionSchool of Data Science
Corresponding AuthorXu, Dabo
Affiliation
1.Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
2.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Peoples R China
Recommended Citation
GB/T 7714
Jiang, Teng,Xu, Dabo,Chen, Tianshiet al. Parameter estimation of discrete-time sinusoidal signals: A nonlinear control approach[J]. AUTOMATICA,2019.
APA Jiang, Teng, Xu, Dabo, Chen, Tianshi, & Sheng, Andong. (2019). Parameter estimation of discrete-time sinusoidal signals: A nonlinear control approach. AUTOMATICA.
MLA Jiang, Teng,et al."Parameter estimation of discrete-time sinusoidal signals: A nonlinear control approach".AUTOMATICA (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Jiang, Teng]'s Articles
[Xu, Dabo]'s Articles
[Chen, Tianshi]'s Articles
Baidu academic
Similar articles in Baidu academic
[Jiang, Teng]'s Articles
[Xu, Dabo]'s Articles
[Chen, Tianshi]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Jiang, Teng]'s Articles
[Xu, Dabo]'s Articles
[Chen, Tianshi]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.