Details of Research Outputs

TitleDynamical scaling laws of out-of-time-ordered correlators
Author (Name in English or Pinyin)
Wei, Bo-Bo1,2; Sun, Gaoyong3; Hwang, Myung-Joong4,5,6
Date Issued2019-11-06
Source PublicationPHYSICAL REVIEW B
Indexed BySCIE
Funding Project国家自然科学基金项目
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 100 期: 19
[1] A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Zh. Eksp. Teor. Fiz. 55, 2262 (1969)
[2] A. I. Larkin and Y. N. Ovchinnikov, [Sov. Phys. JETP 28, 1200 (1969)].
[3] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, in Proceedings of the Fundamental Physics Prize Symposium, 2014 (unpublished).
[4] S. H. Shenker and D. Stanford, Black holes and the butterfly effect, J. High Energy Phys. 03 (2014) 067. JHEPFG 1029-8479 10.1007/JHEP03(2014)067
[5] S. H. Shenker and D. Stanford, Multiple shocks, J. High Energy Phys. 12 (2014) 46. JHEPFG 1029-8479 10.1007/JHEP12(2014)046
[6] S. A. Hartnoll, Theory of universal incoherent metallic transport, Nat. Phys. 11, 54 (2015). 1745-2473 10.1038/nphys3174
[7] S. H. Shenker and D. Stanford, Stringy effects in scrambling, J. High Energy Phys. 05 (2015) 132. JHEPFG 1029-8479 10.1007/JHEP05(2015)132
[8] A. Kitaev, A simple model of quantum holography, in Proceedings of the KITP Strings Seminar and Entanglement, 2015 (unpublished).
[9] Y. Chen, Universal logarithmic scrambling in many body localization, arXiv:1608.02765.
[10] S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95, 134302 (2017). 2469-9950 10.1103/PhysRevB.95.134302
[11] R. Q. He and Z. Y. Lu, Characterizing many-body localization by out-of-time-ordered correlation, Phys. Rev. B 95, 054201 (2017). 2469-9950 10.1103/PhysRevB.95.054201
[12] H. T. Shen, P. F. Zhang, R. H. Fan and H. Zhai, Out-of-time-order correlation at a quantum phase transition, Phys. Rev. B 96, 054503 (2017). 2469-9950 10.1103/PhysRevB.96.054503
[13] K. Slagle, Z. Bi, Y.-Z. You, and C. Xu, Out-of-time-order correlation in marginal many-body localized systems, Phys. Rev. B 95, 165136 (2017). 2469-9950 10.1103/PhysRevB.95.165136
[14] R. Fan, P. Zhang, H. Shen, and H. Zhai, Out-of-time-order correlation for many-body localization, Sci. Bull. 62, 707 (2017). 2095-9273 10.1016/j.scib.2017.04.011
[15] X. Chen and T. Zhou, Operator scrambling and quantum chaos, arXiv:1804.08655.
[16] Y. Huang, Y.-L. Zhang, and X. Chen, Out-of-time-ordered correlators in many-body localized systems, Ann. Phys. (Amsterdam) 529, 1600318 (2017). 10.1002/andp.201600318
[17] E. Iyoda and T. Sagawa, Scrambling of quantum information in quantum many-body systems, Phys. Rev. A 97, 042330 (2018). 2469-9926 10.1103/PhysRevA.97.042330
[18] C. J. Lin and O. I. Motrunich, Out-of-time-ordered correlators in a quantum Ising chain, Phys. Rev. B 97, 144304 (2018). 2469-9950 10.1103/PhysRevB.97.144304
[19] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini, A. Silva, and R. Fazio, Scrambling and entanglement spreading in long-range spin chains, Phys. Rev. B 98, 134303 (2018). 2469-9950 10.1103/PhysRevB.98.134303
[20] N. Y. Halpern, A. Bartolotta, and J. Pollack, Entropic uncertainty relations for quantum information scrambling, Commun. Phys. 2, 92 (2019). 10.1038/s42005-019-0179-8
[21] S. V. Syzranov, A. V. Gorshkov, and V. Galitski, Out-of-time-order correlators in finite open systems, Phys. Rev. B 97, 161114 (R) (2018). 2469-9950 10.1103/PhysRevB.97.161114
[22] Y.-L. Zhang, Y. Huang, and X. Chen, Information scrambling in chaotic systems with dissipation, Phys. Rev. B 99, 014303 (2019). 10.1103/PhysRevB.99.014303
[23] B. Swingle, Unscrambling the physics of out-of-time-order correlators, Nat. Phys. 14, 988 (2018). 1745-2473 10.1038/s41567-018-0295-5
[24] M. McGinley, A. Nunnenkamp, and J. Knolle, Slow Growth of Out-of-Time-Order Correlators and Entanglement Entropy in Integrable Disordered Systems, Phys. Rev. Lett. 122, 020603 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.122.020603
[25] J. R. G. Alonso, N. Y. Halpern, and J. Dressel, Out-of-Time-Ordered-Correlator Quasiprobabilities Robustly Witness Scrambling, Phys. Rev. Lett. 122, 040404 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.122.040404
[26] D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks, J. High Energy Phys. 03 (2015) 051. JHEPFG 1029-8479 10.1007/JHEP03(2015)051
[27] D. A. Roberts and D. Stanford, Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory, Phys. Rev. Lett. 115, 131603 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.131603
[28] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 08 (2016) 106. JHEPFG 1029-8479 10.1007/JHEP08(2016)106
[29] I. L. Aleiner, L. Faoro, and L. B. Ioffe, Microscopic model of quantum butterfly effect: Out-of-time-order correlators and traveling combustion waves, Ann. Phys. (Amsterdam) 375, 378 (2016). APNYA6 0003-4916 10.1016/j.aop.2016.09.006
[30] M. Blake, Universal diffusion in incoherent black holes, Phys. Rev. D 94, 086014 (2016). 2470-0010 10.1103/PhysRevD.94.086014
[31] A. Lucas and J. Steinberg, Charge diffusion and the butterfly effect in striped holographic matter, J. High Energy Phys. 10 (2016) 143. JHEPFG 1029-8479 10.1007/JHEP10(2016)143
[32] D. A. Roberts and B. Swingle, Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories, Phys. Rev. Lett. 117, 091602 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.091602
[33] P. Hosur, X. L. Qi, D. A. Roberts, and B. Yoshida, Chaos in quantum channels, J. High Energy Phys. 02 (2016) 4. JHEPFG 1029-8479 10.1007/JHEP02(2016)004
[34] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, J. High Energy Phys. 05 (2017) 125. JHEPFG 1029-8479 10.1007/JHEP05(2017)125
[35] D. A. Roberts and B. Yoshida, Chaos and complexity by design, J. High Energy Phys. 04 (2017) 121. JHEPFG 1029-8479 10.1007/JHEP04(2017)121
[36] A. A. Patel, D. Chowdhury, S. Sachdev and B. Swingle, Quantum Butterfly Effect in Weakly Interacting Diffusive Metals, Phys. Rev. X 7, 031047 (2017). 10.1103/PhysRevX.7.031047
[37] B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363.
[38] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy Phys. 10 (2008) 065. JHEPFG 1029-8479 10.1088/1126-6708/2008/10/065
[39] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden, Towards the fast scrambling conjecture, J. High Energy Phys. 04 (2013) 022. JHEPFG 1029-8479 10.1007/JHEP04(2013)022
[40] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Measuring the scrambling of quantum information, Phys. Rev. A 94, 040302 (R) (2016). 2469-9926 10.1103/PhysRevA.94.040302
[41] G. Zhu, M. Hafezi, and T. Grover, Measurement of many-body chaos using a quantum clock, Phys. Rev. A 94, 062329 (2016). 2469-9926 10.1103/PhysRevA.94.062329
[42] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-Kurn, J. E. Moore, and E. A. Demler, Interferometric approach to probing fast scrambling, arXiv:1607.01801.
[43] N. Tsuji, P. Werner, and M. Ueda, Exact out-of-time-ordered correlation functions for an interacting lattice fermion model, Phys. Rev. A 95, 011601 (R) (2017). 2469-9926 10.1103/PhysRevA.95.011601
[44] N. Y. Halpern, Jarzynski-like equality for the out-of-time-ordered correlator, Phys. Rev. A 95, 012120 (2017). 2469-9926 10.1103/PhysRevA.95.012120
[45] M. Campisi and J. Goold, Thermodynamics of quantum information scrambling, Phys. Rev. E 95, 062127 (2017). 2470-0045 10.1103/PhysRevE.95.062127
[46] B. Swingle and N. Y. Halpern, Resilience of scrambling measurements, Phys. Rev. A 97, 062113 (2018). 2469-9926 10.1103/PhysRevA.97.062113
[47] N. Y. Halpern, B. Swingle, and J. Dressel, Quasiprobability behind the out-of-time-ordered correlator, Phys. Rev. A 97, 042105 (2018). 2469-9926 10.1103/PhysRevA.97.042105
[48] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. H. Peng, and J. F. Du, Measuring Out-of-Time-Order Correlators on a Nuclear Magnetic Resonance Quantum Simulator, Phys. Rev. X 7, 031011 (2017). 10.1103/PhysRevX.7.031011
[49] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger, and A. M. Rey, Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet, Nat. Phys. 13, 781 (2017). 1745-2473 10.1038/nphys4119
[50] E. J. Meier, J. Ang'ong'a, F. A. An, and B. Gadway, Exploring quantum signatures of chaos on a Floquet synthetic lattice, Phys. Rev. A 100, 013623 (2019). 10.1103/PhysRevA.100.013623
[51] K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y. Yao, and C. Monroe, Verified quantum information scrambling, Nature (London) 567, 61 (2019). NATUAS 0028-0836 10.1038/s41586-019-0952-6
[52] M. Niknam, L. F. Santos, and D. G. Cory, Sensitivity of quantum information to environment perturbations measured with the out-of-time-order correlation function, arXiv:1808.04375.
[53] S. Sachdev, Quantum phase transitions, 2nd ed. (Cambridge University Press, Cambridge, England, 2011).
[54] J. L. Cardy, Scaling and renormalization in statistical physics (Cambridge University Press, Cambridge, 1996).
[55] M. Blake, Universal Charge Diffusion and the Butterfly Effect in Holographic Theories, Phys. Rev. Lett. 117, 091601 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.091601
[56] Y. Ling and Z. Y. Xian, Holographic butterfly effect and diffusion in quantum critical region, J. High Energy Phys. 09 (2017) 003. JHEPFG 1029-8479 10.1007/JHEP09(2017)003
[57] Y. Ling, P. Liu, and J. P. Wu, Note on the butterfly effect in holographic superconductor models, Phys. Lett. B 768, 288 (2017). PYLBAJ 0370-2693 10.1016/j.physletb.2017.03.010
[58] M. Baggioli, B. Padhi, P. W. Phillips, and C. Setty, Conjecture on the butterfly velocity across a quantum phase transition, J. High Energy Phys. 07 (2018) 049. JHEPFG 1029-8479 10.1007/JHEP07(2018)049
[59] M. Heyl, F. Pollmann, and B. Dóra, Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered Correlators, Phys. Rev. Lett. 121, 016801 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.016801
[60] C. B. Daǧ, K. Sun, and L. M. Duan, Detection of Quantum Phases via Out-of-Time-Order Correlators, Phys. Rev. Lett. 123, 140602 (2019). 10.1103/PhysRevLett.123.140602
[61] Z.-H. Sun, J.-Q. Cai, Q.-C. Tang, Y. Hu, and H. Fan, Out-of-time-order correlators and quantum phase transitions in the Rabi and Dicke model, arXiv:1811.11191.
[62] C. Karrasch and D. Schuricht, Dynamical phase transitions after quenches in nonintegrable models, Phys. Rev. B 87, 195104 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.195104
[63] V. Alba and M. Fagotti, Prethermalization at Low Temperature: The Scent of Long-Range Order, Phys. Rev. Lett. 119, 010601 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.010601
[64] U. Schollwoeck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. (NY) 326, 96 (2011). APNYA6 0003-4916 10.1016/j.aop.2010.09.012
[65] M.-J. Hwang, B.-B. Wei, S. F. Huelga, and M. B. Plenio, Universality in the decay and revival of Loschmidt echoes, arXiv:1904.09937.
[66] B. P. Lanyon, C. Hempel, D. Nigg, M. Mueller, R. Gerritsma, F. Zaehringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt and C. F. Roos, Universal digital quantum simulation with trapped ions, Science 334, 57 (2011). SCIEAS 0036-8075 10.1126/science.1208001
[67] P. Richerme, Z. X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Non-local propagation of correlations in long-range interacting quantum systems, Nature (London) 511, 198 (2014). NATUAS 0028-0836 10.1038/nature13450
[68] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, Observation of entanglement propagation in a quantum many-body system, Nature (London) 511, 202 (2014). NATUAS 0028-0836 10.1038/nature13461
[69] H. J. Lipkin, N. Meshkov, and A. Glick, Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory, Nucl. Phys. 62, 188 (1965). NUPHA7 0029-5582 10.1016/0029-5582(65)90862-X
[70] R. Botet, R. Jullien, and P. Pfeuty, Size Scaling for Infinitely Coordinated Systems, Phys. Rev. Lett. 49, 478 (1982). PRLTAO 0031-9007 10.1103/PhysRevLett.49.478
[71] R. Botet and R. Jullien, Large-size critical behavior of infinitely coordinated systems, Phys. Rev. B 28, 3955 (1983). PRBMDO 0163-1829 10.1103/PhysRevB.28.3955
[72] S. Dusuel and J. Vidal, Finite-Size Scaling Exponents of the Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 93, 237204 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.237204
Citation statistics
Cited Times:17[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorWei, Bo-Bo; Sun, Gaoyong; Hwang, Myung-Joong
1.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Peoples R China
2.Peng Cheng Lab, Ctr Quantum Comp, Shenzhen 518055, Peoples R China
3.Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Jiangsu, Peoples R China
4.Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
5.Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
6.Duke Kunshan Univ, 8 Duke Ave, Kunshan 215316, Jiangsu, Peoples R China
Recommended Citation
GB/T 7714
Wei, Bo-Bo,Sun, Gaoyong,Hwang, Myung-Joong. Dynamical scaling laws of out-of-time-ordered correlators[J]. PHYSICAL REVIEW B,2019.
APA Wei, Bo-Bo, Sun, Gaoyong, & Hwang, Myung-Joong. (2019). Dynamical scaling laws of out-of-time-ordered correlators. PHYSICAL REVIEW B.
MLA Wei, Bo-Bo,et al."Dynamical scaling laws of out-of-time-ordered correlators".PHYSICAL REVIEW B (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Wei, Bo-Bo]'s Articles
[Sun, Gaoyong]'s Articles
[Hwang, Myung-Joong]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wei, Bo-Bo]'s Articles
[Sun, Gaoyong]'s Articles
[Hwang, Myung-Joong]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wei, Bo-Bo]'s Articles
[Sun, Gaoyong]'s Articles
[Hwang, Myung-Joong]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.