Details of Research Outputs

TitleA vision-based perception framework for outdoor navigation tasks applicable to legged robots
Author (Name in English or Pinyin)
Date Issued2017-10-20
Conference Name2017 Chinese Automation Congress (CAC)
Source Publication2017 Chinese Automation Congress (CAC)
Conference PlaceJinan, China
DOI10.1109/CAC.2017.8243269
Indexed BySCOPUS
Funding Project国家自然科学基金项目
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
CN9781538635247
Published range国内外公开发行
Volume Issue Pages2894-2899
References
[1] R. Deits and R. Tedrake, "Computing Large Convex Regions of Obstacle-Free Space Through Semidefinite Programming, " in Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics, vol. 107, H. L. Akin, N. M. Amato, V. Isler, A. F. van der Stappen, Eds. Cham: Springer International Publishing, 2015, pp. 109-124.
[2] M. Buehler, "Locomotion. Dynamic Locomotion One, Four and Six-Legged Robots., " J. Robot. Soc. Japan, 2002.
[3] K. Iagnemma, S. Kang, H. Shibly, S. Dubowsky, "Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers, " IEEE Trans. Robot., 2004.
[4] H. Geyer, A. Seyfarth, R. Blickhan, "Positive force feedback in bouncing gaits, " Proceedings. Biol. Sci., vol. 270, no. 1529, pp. 2173-2183, Oct. 2003.
[5] E. Ackerman, "DARPA LS3 Robot Mule Learns New Tricks, Loves a Mud Bath, " IEEE Spectr., 2012.
[6] I. R. M. Alexander Shkolnik, Michael Levashov and R. Tedrake, "Bounding on rough terrain with the LittleDog robot, " Int. J. Rob. Res., vol. 30, no. 2, pp. 192-215, 2010.
[7] J. Ma, S. Susca, M. Bajracharya, L. Matthies, M. Malchano, D. Wooden, "Robust multi-sensor, day/night 6-DOF pose estimation for a dynamic legged vehicle in GPS-denied environments, " 2012 IEEE International Conference on Robotics and Automation. pp. 619-626, 2012.
[8] Y. Li, B. Li, J. Ruan, X. Rong, "Research of mammal bionic quadruped robots: A review, " 2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM). pp. 166-171, 2011.
[9] X. Shao, Y. Yang, Y. Zhang, W. Wang, "Trajectory planning and posture adjustment of a quadruped robot for obstacle striding, " 2011 IEEE International Conference on Robotics and Biomimetics. pp. 1924-1929, 2011.
[10] C. Brooks, K. Iagnemma, S. Dubowsky, "Vibration-based Terrain Analysis for Mobile Robots, " Proceedings of the 2005 IEEE International Conference on Robotics and Automation. pp. 3415-3420, 2005.
[11] L. Nanni, A. Lumini, S. Brahnam, "Survey on LBP based texture descriptors for image classification, " Expert Syst. Appl., vol. 39, no. 3, pp. 3634-3641, 2012.
[12] M. Grabner, H. Grabner, H. Bischof, "Fast Approximated SIFT, " in Computer Vision-ACCV 2006: 7th Asian Conference on Computer Vision, Hyderabad, India, January 13-16, 2006. Proceedings, Part I, P. J. Narayanan, S. K. Nayar, H.-Y. Shum, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 918-927.
[13] H. Bay, T. Tuytelaars, L. Van Gool, "SURF: Speeded Up Robust Features, " Comput. Vis. Image Underst., vol. 10, no. 3, pp. 346-359, 2008.
[14] A. V. Keerthana and M. Ashwin, "A Survey of Texture Classification using Recent Technology, " Int. J. Comput. Sci. Mob. Appl., vol. 2, no. 11, pp. 201-212, 2014.
[15] P. Filitchkin, "Visual Terrain Classification For Legged Robots, " Univeristy of California, Santa Barbara, 2011.
[16] J. Donahue, et al., "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition., " in Icml, 2014, vol. 32, pp. 647-655.
[17] A. Krizhevsky, I. Sutskever, H. Geoffrey E., "ImageNet Classification with Deep Convolutional Neural Networks, " Adv. Neural Inf. Process. Syst. 25, pp. 1-9, 2012.
[18] A. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, "Describing Textures in the Wild, " in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3606-3613.
[19] L. Tai, S. Li, M. Liu, "A deep-network solution towards modelless obstacle avoidance, " IEEE Int. Conf. Intell. Robot. Syst., vol. 2016-Novem, pp. 2759-2764, 2016.
[20] A. Giusti, et al., "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots, " Robot. Autom. Lett., vol. 1, no. 2, pp. 661-667, 2015.
[21] H. Hirschmüller, "Stereo Processing by Semi-Global Matching and Mutual Information, " IEEE Trans. Pattern Anal. Mach. Intell., pp. 1-14, 2007.
[22] M. J. Procopio, J. Mulligan, G. Grudic, "Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments, " J. F. Robot., vol. 23, no. 2, pp. 245-267, 2006.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeConference paper
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/729
CollectionInstitute of Robotics and Intelligent Manufacturing
School of Science and Engineering
Corresponding AuthorZhang, A.
Affiliation
1.Institute of Robotics and Intelligent Manufacturing (IRIM), Chinese University of Hong Kong, Shenzhen, China
2.State Joint Engineering Laboratory for Robotics and Intelligent Manufacturing, School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
First Author AffilicationInstitute of Robotics and Intelligent Manufacturing
Corresponding Author AffilicationInstitute of Robotics and Intelligent Manufacturing
Recommended Citation
GB/T 7714
Sun, J.,Meng, Y.,Tan, J.et al. A vision-based perception framework for outdoor navigation tasks applicable to legged robots[C],2017.
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Sun, J.]'s Articles
[Meng, Y.]'s Articles
[Tan, J.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Sun, J.]'s Articles
[Meng, Y.]'s Articles
[Tan, J.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Sun, J.]'s Articles
[Meng, Y.]'s Articles
[Tan, J.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.