Details of Research Outputs

TitleGeneration and Hall effect of skyrmions enabled using nonmagnetic point contacts
Author (Name in English or Pinyin)
Wang, Zidong1,2,3; Zhang, Xichao4; Xia, Jing4; Zhao, Le1,2,3; Wu, Keyu1,2,3; Yu, Guoqiang5; Wang, Kang L.6; Liu, Xiaoxi7; te Velthuis, Suzanne G. E.8; Hoffmann, Axel8,9; Zhou, Yan4; Jiang, Wanjun1,2,3
Date Issued2019-11-27
Source PublicationPHYSICAL REVIEW B
Indexed BySCIE
Funding Project国家自然科学基金项目
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 100 期: 18
[1] U. K. Rossler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature (London) 442, 797 (2006). 10.1038/nature05056
[2] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral magnet, Science 323, 915 (2009). 10.1126/science.1166767
[3] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature (London) 465, 901 (2010). 10.1038/nature09124
[4] N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8, 899 (2013). 10.1038/nnano.2013.243
[5] F. Büttner, C. Moutafis, M. Schneider, B. Krüger, C. M. Günther, J. Geilhufe, C. V. Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F. Vaz, J. H. Franken, H. J. M. Swagten, M. Klaüi, and S. Eisebitt, Dynamics and inertia of skyrmionic spin structures, Nat. Phys. 11, 225 (2015). 10.1038/nphys3234
[6] W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing magnetic skyrmion bubbles, Science 349, 283 (2015). 10.1126/science.aaa1442
[7] G. Chen, A. Mascaraque, A. T. N'Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett. 106, 242404 (2015). 10.1063/1.4922726
[8] S. Woo, K. Litzius, B. Kruger, M. Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Klaüi, and G. S. Beach, Observation of roomerature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater. 15, 501 (2016). 10.1038/nmat4593
[9] C. Moreau-Luchaire, S. C. Mouta, N. Reyren, J. Sampaio, C. A. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotechnol. 11, 444 (2016). 10.1038/nnano.2015.313
[10] O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T. O. Mentes, A. Sala, L. D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigne, A. Stashkevich, S. M. Cherif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. M. Miron, and G. Gaudin, Roomerature chiral magnetic skyrmions in ultrathin magnetic nanostructures, Nat. Nanotechnol. 11, 449 (2016). 10.1038/nnano.2015.315
[11] W. Jiang, Z. Xichao, G. Yu, W. Zhang, X. Wang, M. B. Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and S. G. E. te Velthuis, Direct observation of the skyrmion Hall effect, Nat. Phys. 13, 162 (2017). 10.1038/nphys3883
[12] W. Jiang, G. Chen, L. Kai, Z. Jiadong, G. E. t. V. Suzanne, and H. Axel, Skyrmions in magnetic multilayers, Phys. Rep. 704, 1 (2017). 10.1016/j.physrep.2017.08.001
[13] K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G. S. D. Beach, and M. Klaüi, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy, Nat. Phys. 13, 170 (2017). 10.1038/nphys4000
[14] A. Soumyanarayanan, M. Raju, A. L. Gonzalez Oyarce, A. K.C. Tan, M.-Y. Im, A. P. Petrovic, P. Ho, K.H. Khoo, M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, Analogue tuning of magnetic skyrmion properties at room temperature in Ir/Fe/Co/Pt multilayers, Nat. Mater. 16, 898 (2017). 10.1038/nmat4934
[15] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2, 17031 (2017). 10.1038/natrevmats.2017.31
[16] F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. Beach, E. Fullerton, C. Leighton, A. MacDonald, D. Ralph, D. Arena, H. Dürr, P. Fischer, J. Grollier, J. Heremans, T. Jungwirth, A. Kimmel, B. Koopmans, I. Krivorotov, S. May, A. Petford-Long, J. Rondinelli, N. Samarth, I. Schuller, A. Slavin, M. Stiles, O. Tchernyshyov, A. Thiaville, and B. Zink, Interface-induced phenomena in magnetism, Rev. Mod. Phys. 89, 025006 (2017). 10.1103/RevModPhys.89.025006
[17] G. Finocchio, F. Büttner, R. Tomasello, M. Carpentieri, and M. Klaüi, Magnetic skyrmions: From fundamental to applications, J. Phys. D: Appl. Phys. 49, 423001 (2016). 10.1088/0022-3727/49/42/423001
[18] W. Kang, Y. Q. Huang, X. C. Zhang, Y. Zhou, and W. S. Zhao, Skyrmion-electronics: An overview and outlook, Proc. IEEE 104, 2040 (2016). 10.1109/JPROC.2016.2591578
[19] G. Q. Yu, P. Upadhyaya, X. Li, W. Y. Li, S. K. Kim, Y. B. Fan, K. L. Wong, Y. Tserkovnyak, P. K. Amiri, and K. L. Wang, Roomerature creation and spin orbit torque manipulation of skyrmions in thin films with engineered asymmetry, Nano Lett. 16, 1981 (2016). 10.1021/acs.nanolett.5b05257
[20] K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui, Perspective: Magnetic skyrmions-Overview of recent progress in an active research field, J. Appl. Phys. 124, 240901 (2018). 10.1063/1.5048972
[21] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91
[22] I. E. Dzyaloshinskii, Theory of helicoidal structures in antiferromagnets, JETP Lett. 19, 960 (1964).
[23] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blugel, and R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry, Nature (London) 447, 190 (2007). 10.1038/nature05802
[24] G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N'Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films, Phys. Rev. Lett. 110, 177204 (2013). 10.1103/PhysRevLett.110.177204
[25] M. Heide, G. Bihlmayer, and S. Blügel, Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (R) (2008). 10.1103/PhysRevB.78.140403
[26] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8, 152 (2013). 10.1038/nnano.2013.29
[27] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol. 8, 839 (2013). 10.1038/nnano.2013.210
[28] X. C. Zhang, G. P. Zhao, H. Fangohr, J. P. Liu, W. X. Xia, J. Xia, and F. J. Morvan, Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory, Sci. Rep. 5, 7643 (2015). 10.1038/srep07643
[29] X. Zhang, Y. Zhou, and E. Motohiko, Magnetic bilayer-skyrmions without skyrmion Hall effect, Nat. Commun. 7, 10293 (2016). 10.1038/ncomms10293
[30] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, A strategy for the design of skyrmion racetrack memories, Sci. Rep. 4, 6784 (2014). 10.1038/srep06784
[31] G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri, and K. L. Wang, Roomerature skyrmion shift device for memory application, Nano Lett. 17, 261 (2017). 10.1021/acs.nanolett.6b04010
[32] S. Woo, K. M. Song, X. Zhang, Y. Zhou, M. Ezawa, S. Finizio, J. Raabe, J. W. Choi, B.-C. Min, H. C. Koo, and J. Chang, Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films, Nat. Commun. 9, 959 (2018). 10.1038/s41467-018-03378-7
[33] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341, 636 (2013). 10.1126/science.1240573
[34] M. He, L. C. Peng, Z. Z. Zhu, G. Li, J. W. Cai, J. Q. Li, H. X. Wei, L. Gu, S. G. Wang, T. Y. Zhao, B. G. Shen, and Y. Zhang, Realization of zero-field skyrmions with high-density via electromagnetic manipulation in Pt/Co/Ta multilayers, Appl. Phys. Lett. 111, 202403 (2017). 10.1063/1.5001322
[35] W. Koshibae and N. Nagaosa, Creation of skyrmions and antiskyrmions by local heating, Nat. Commun. 5, 5148 (2014). 10.1038/ncomms6148
[36] M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, T. Rasing, and M. Ezawa, Laser-Induced Magnetic Nanostructures with Tunable Topological Properties, Phys. Rev. Lett. 110, 177205 (2013). 10.1103/PhysRevLett.110.177205
[37] S. G. Je, P. Vallobra, T. Srivastava, J. C. Rojas-Sanchez, T. H. Pham, M. Hehn, G. Malinowski, C. Baraduc, S. Auffret, G. Gaudin, S. Mangin, H. Bea, and O. Boulle, Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films, Nano Lett. 18, 7362 (2018). 10.1021/acs.nanolett.8b03653
[38] M. Schott, A. Bernand-Mantel, L. Ranno, S. Pizzini, J. Vogel, H. Bea, C. Baraduc, S. Auffret, G. Gaudin, and D. Givord, The skyrmion switch: Turning magnetic skyrmion off with an electric field, Nano Lett. 17, 3006 (2017). 10.1021/acs.nanolett.7b00328
[39] C. Ma, X. C. Zhang, J. Xia, M. Ezawa, W. J. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. X. Liu, Electric field-induced creation and directional motion of domain walls and skyrmion bubbles, Nano Lett. 19, 353 (2019). 10.1021/acs.nanolett.8b03983
[40] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries, Nat. Nanotechnol. 8, 742 (2013). 10.1038/nnano.2013.176
[41] Y. Zhou and M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry, Nat. Commun. 5, 4652 (2014). 10.1038/ncomms5652
[42] S.-Z. Lin, Edge instability in a chiral stripe domain under an electric current and skyrmion generation, Phys. Rev. B 94, 020402 (R) (2016). 10.1103/PhysRevB.94.020402
[43] F. Büttner, I. Lemesh, M. Schneider, B. Pfau, C. M. Gunther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Kruger, J. Viefhaus, S. Eisebitt, and G. S. D. Beach, Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques, Nat. Nanotechnol. 12, 1040 (2017). 10.1038/nnano.2017.178
[44] A. Hrabec, J. Sampaio, M. Belmeguenai, I. Gross, R. Weil, S. M. Chérif, A. Stachkevitch, V. Jacques, A. Thiaville, and S. Rohart, Current-induced skyrmion generation and dynamics in symmetric bilayers, Nat. Commun. 8, 15765 (2017). 10.1038/ncomms15765
[45] W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Collin, K. Bouzehouane, V. Cros, and A. Fert, Roomerature current-induced generation and motion of sub-100nm skyrmions, Nano Lett. 17, 2703 (2017). 10.1021/acs.nanolett.7b00649
[46] O. Heinonen, W. Jiang, H. Somaily, S. G. E. te Velthuis, and A. Hoffmann, Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents, Phys. Rev. B 93, 094407 (2016). 10.1103/PhysRevB.93.094407
[47] W. Jiang, W. Zhang, G. Q. Yu, M. B. Jungfleisch, P. Upadhyaya, H. Somaily, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Mobile Neel skyrmions at room temperature: Status and future, AIP Adv. 6, 055602 (2016). 10.1063/1.4943757
[48] K. Everschor-Sitte, M. Sitte, T. Valet, A. Abanov, and J. Sinova, Skyrmion production on demand by homogeneous DC currents, New J. Phys. 19, 092001 (2017). 10.1088/1367-2630/aa8569
[49] M. Ezawa, Giant Skyrmions Stabilized by Dipole-Dipole Interactions in Thin Ferromagnetic Films, Phys. Rev. Lett. 105, 197202 (2010). 10.1103/PhysRevLett.105.197202
[50] K. Everschor-Sitte and M. Sitte, Real-space Berry phases: Skyrmion soccer (invited). J. Appl. Phys. 115, 172602 (2014). 10.1063/1.4870695
[51] G. B. Liu, D. Li, P. F. de Chatel, J. Wang, W. Liu, and Z. D. Zhang, Control of Hall angle of Skyrmion driven by electric current, Chin. Phys B 25, 067203 (2016). 10.1088/1674-1056/25/6/067203
[52] S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable skyrmion logic gates, Nano Lett 18, 1180 (2018). 10.1021/acs.nanolett.7b04722
[53] C. Reichhardt, D. Ray, and C. J. O. Reichhardt, Collective Transport Properties of Driven Skyrmions with Random Disorder, Phys. Rev. Lett. 114, 217202 (2015). 10.1103/PhysRevLett.114.217202
[54] A. Hoffmann, Spin Hall effects in metals, IEEE Trans. Magn. 49, 5172 (2013). 10.1109/TMAG.2013.2262947
[55] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015). 10.1103/RevModPhys.87.1213
[56] L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science 336, 555 (2012). 10.1126/science.1218197
[57] K. Ueda, K.-J. Kim, Y. Yoshimura, R. Hiramatsu, T. Moriyama, D. Chiba, H. Tanigawa, T. Suzuki, E. Kariyada, and T. Ono, Transition in mechanism for current-driven magnetic domain wall dynamics, Appl. Phys. Express. 7, 053006 (2014). 10.7567/APEX.7.053006
[58] M. J. Donahue and D. G. Porter, oommf User's Guide (Interagency Report NISTIR 6376, NIST, Gaithersburg, MD, (1999).
[59] See Supplemental Material at, for detailed discussion about the micromagnetic simulation and solution of Thiele equation in the presence of inhomogeneous currents, and Refs. [30,66].
[60] W. Koshibae and N. Nagaosa, Theory of antiskyrmions in magnets, Nat. Commun. 7, 10542 (2016). 10.1038/ncomms10542
[61] M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff, N. S. Kiselev, C. Melcher, and S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions, Nat. Commun. 8, 308 (2017). 10.1038/s41467-017-00313-0
[62] M. Stier, W. Hausler, T. Posske, G. Gurski, and M. Thorwart, Skyrmion-Anti-Skyrmion Pair Creation by In-Plane Currents, Phys. Rev. Lett. 118, 267203 (2017). 10.1103/PhysRevLett.118.267203
[63] X. Zhang, J. Xia, Y. Zhou, X. Liu, H. Zhang, and M. Ezawa, Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition, Nat. Commun. 8, 1717 (2017). 10.1038/s41467-017-01785-w
[64] Y. Liu, H. Yan, M. Jia, H. F. Du, and A. Du, Topological analysis of spin-torque driven magnetic skyrmion formation, Appl. Phys. Lett. 109, 102402 (2016). 10.1063/1.4962452
[65] C. Reichhardt and C. J. O. Reichhardt, Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate, Phys. Rev. B 94, 094413 (2016). 10.1103/PhysRevB.94.094413
[66] A. A. Thiele, Steady-State Motion of Magnetic Domains, Phys. Rev. Lett. 30, 230 (1973). 10.1103/PhysRevLett.30.230
[67] R. Tomasello, A. Giordano, S. Chiappini, R. Zivieri, G. Siracusano, V. Puliafito, I. Medlej, A. La Corte, B. Azzerboni, M. Carpentieri, Z. M. Zeng, and G. Finocchio, Micromagnetic understanding of the skyrmion Hall angle current dependence in perpendicularly magnetized ferromagnets, Phys. Rev. B 98, 224418 (2018). 10.1103/PhysRevB.98.224418
Citation statistics
Cited Times:14[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Corresponding AuthorJiang, Wanjun
1.Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
2.Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
3.Tsinghua Univ, Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
4.Chinese Univ Hong Kong , Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
5.Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
6.Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
7.Shinshu Univ, Dept Elect & Comp Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
8.Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
9.Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
Recommended Citation
GB/T 7714
Wang, Zidong,Zhang, Xichao,Xia, Jinget al. Generation and Hall effect of skyrmions enabled using nonmagnetic point contacts[J]. PHYSICAL REVIEW B,2019.
APA Wang, Zidong., Zhang, Xichao., Xia, Jing., Zhao, Le., Wu, Keyu., .. & Jiang, Wanjun. (2019). Generation and Hall effect of skyrmions enabled using nonmagnetic point contacts. PHYSICAL REVIEW B.
MLA Wang, Zidong,et al."Generation and Hall effect of skyrmions enabled using nonmagnetic point contacts".PHYSICAL REVIEW B (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Wang, Zidong]'s Articles
[Zhang, Xichao]'s Articles
[Xia, Jing]'s Articles
Baidu academic
Similar articles in Baidu academic
[Wang, Zidong]'s Articles
[Zhang, Xichao]'s Articles
[Xia, Jing]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang, Zidong]'s Articles
[Zhang, Xichao]'s Articles
[Xia, Jing]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.