Details of Research Outputs

TitleIndoor Semantic-Rich Link-Node Model Construction Using Crowdsourced Trajectories From Smartphones
Author (Name in English or Pinyin)
Date Issued2019-11-15
Source PublicationIEEE SENSORS JOURNAL
ISSN1530-437X
DOI10.1109/JSEN.2019.2933746
Indexed BySCIE
Funding Project国家自然科学基金项目
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 19 期: 22 页: 10917-10934
References
[1] P.-Y. Gillieron, D. Buchel, I. Spassov, and B. Merminod, "Indoor navigation performance analysis, " in Proc. Eur. Navigat. Conf. Global Navigat. Satell. Syst., Rotterdam, The Netherlands, 2004, pp. 30-39.
[2] B. Zhou, Q. Li, Q. Mao, W. Tu, X. Zhang, and L. Chen, "ALIMC: Activity landmark-based indoor mapping via crowdsourcing, " IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2774-2785, Oct. 2015.
[3] M. Elhamshary and M. Youssef, "Semsense: Automatic construction of semantic indoor floorplans, " in Proc. 2015 Int. Conf. Indoor Positioning Indoor Navigat. (IPIN), Banff, AB, Canada, Oct. 2015, pp. 1-11.
[4] J. Cui, F. Liu, D. Janssens, S. An, G. Wets, and M. Cools, "Detecting urban road network accessibility problems using taxi GPS data, " J. Transp. Geography, vol. 51, pp. 147-157, Feb. 2016.
[5] M. Zimmermann, T. Mai, and E. Frejinger, "Bike route choice modeling using GPS data without choice sets of paths, " Transp. Res. C, Emerg. Technol., vol. 75, pp. 183-196, Feb. 2017.
[6] H. Ju, S. Y. Park, and C. G. Park, "A smartphone-based pedestrian dead reckoning system with multiple virtual tracking for indoor navigation, " IEEE Sensors J., vol. 18, no. 16, pp. 6756-6764, Aug. 2018.
[7] P. Davidson and R. Piché, "A survey of selected indoor positioning methods for smartphones, " IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 1347-1370, 2nd Quart., 2017.
[8] X. Cheng, L. Fang, L. Yang, and S. Cui, "Mobile big data: The fuel for data-driven wireless, " IEEE Internet Things J., vol. 4, no. 5, pp. 1489-1516, Oct. 2017.
[9] Z.-A. Deng, Y.-B. Xu, and L. Ma, "Indoor positioning via nonlinear discriminative feature extraction in wireless local area network, " Comput. Commun., vol. 35, no. 6, pp. 738-747, Mar. 2012.
[10] Z. Yang, C. Wu, Z. Zhou, X. Zhang, X. Wang, and Y. Liu, "Mobility increases localizability: A survey on wireless indoor localization using inertial sensors, " ACM Comput. Surv., vol. 47, no. 3, Apr. 2015, Art. no. 54.
[11] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy, "Smartphone-based indoor localization with Bluetooth low energy beacons, " Sensors, vol. 16, no. 5, pp. 596-616, 2016.
[12] S. Guo, H. Xiong, X. Zheng, and Y. Zhou, "Activity recognition and semantic description for indoor mobile localization, " Sensors, vol. 17, no. 3, pp. 649-673, 2017.
[13] W. Kang and Y. Han, "SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization, " IEEE Sensors J., vol. 15, no. 5, pp. 2906-2916, May 2015.
[14] Z.-A. Deng, G. Wang, Y. Hu, and Y. Cui, "Carrying position independent user heading estimation for indoor pedestrian navigation with smartphones, " Sensors, vol. 16, no. 5, pp. 677-699, 2016.
[15] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, "Zee: Zero-effort crowdsourcing for indoor localization, " in Proc. 18th Annu. Int. Conf. Mobile Comput. Netw., Istanbul, Turkey, Aug. 2012, pp. 293-304.
[16] R. Ijaz, M. A. Pasha, N. U. Hassan, and C. Yuen, "A novel fusion methodology for indoor positioning in IoT-based mobile applications, " in Proc. IEEE 4th World Forum Internet Things (WF-IoT), Singapore, Feb. 2018, pp. 742-747.
[17] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, "A reliable and accurate indoor localization method using phone inertial sensors, " in Proc. ACM Conf. Ubiquitous Comput., Pittsburgh, PA, USA, Sep. 2012, pp. 421-430.
[18] Y. Zhuang and N. El-Sheimy, "Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation, " IEEE Sensors J., vol. 16, no. 1, pp. 224-234, Jan. 2016.
[19] W. Waqar, Y. Chen, and A. Vardy, "Incorporating user motion information for indoor smartphone positioning in sparse Wi-Fi environments, " in Proc. 17th ACM Int. Conf. Model., Anal. Simul. Wireless mobile Syst., Montreal, QC, Canada, Sep. 2014, pp. 267-274.
[20] K. Mao, L. Capra, M. Harman, and Y. Jia, "A survey of the use of crowdsourcing in software engineering, " J. Syst. Softw., vol. 126, pp. 57-84, Apr. 2017.
[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA, USA: MIT Press, 2005.
[22] P. Robertson, M. Angermann, and B. Krach, "Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors, " in Proc. 11th Int. Conf. Ubiquitous Comput., Orlando, FL, USA, Oct. 2009, pp. 93-96.
[23] P. Robertson, M. Angermann, and M. Khider, "Improving simultaneous localization and mapping for pedestrian navigation and automatic mapping of buildings by using online human-based feature labeling, " in Proc. IEEE/ION Position Location Navigat. Symp., Indian Wells, CA, USA, May 2010, pp. 365-374.
[24] B. Ferris, D. Fox, and N. Lawrence, "WiFi-SLAM using Gaussian process latent variable models, " in Proc. 20th Int. Joint Conf. Artif. Intell., Jan. 2007, pp. 2480-2485.
[25] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal, "Efficient, generalized indoor WiFi GraphSlam, " in Proc. IEEE Int. Conf. Robot. Automat., Shanghai, China, May 2011, pp. 1038-1043.
[26] P. Mirowski, T. K. Ho, S. Yi, and M. MacDonald, "Signalslam: Simultaneous localization and mapping with mixed WiFi, Bluetooth, LTE and magnetic signals, " in Proc. 4th Int. Conf. Indoor Positioning Indoor Navigat. (IPIN), Montbéliard, France, Oct. 2013, pp. 1-10.
[27] R. Gao et al., "Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing, " in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., Maui, HI, USA, Sep. 2014, pp. 249-260.
[28] M. Alzantot and M. Youssef, "Crowdinside: Automatic construction of indoor floorplans, " in Proc. 20th Int. Conf. Adv. Geographic Inf. Syst., Redondo Beach, CA, USA, Nov. 2012, pp. 99-108.
[29] M. M. Elhamshary, M. F. Alzantot, and M. Youssef, "Justwalk: A crowdsourcing approach for the automatic construction of indoor floorplans, " IEEE Trans. Mobile Comput., to be published.
[30] D. Philipp et al., "MapGENIE: Grammar-enhanced indoor map construction from crowd-sourced data, " in Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), San Diego, CA, USA, Mar. 2014, pp. 139-147.
[31] S. Chen, M. Li, K. Ren, and C. Qiao, "Crowd map: Accurate reconstruction of indoor floor plans from crowdsourced sensor-rich videos, " in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst., Columbus, OH, USA, Jun./Jul. 2015, pp. 1-10.
[32] Open Geospatial Consortium. IndoorGML. Accessed: Aug. 1, 2019. [Online]. Available: Http://www.indoorgml.net/
[33] K.-J. Li, G. Conti, E. Konstantinidis, S. Zlatanova, and P. Bamidis, "OGC IndoorGML: A standard approach for indoor maps, " in Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation. Amsterdam, The Netherlands: Elsevier, 2019, pp. 187-207.
[34] H.-K. Kang and K.-J. Li, "A standard indoor spatial data model-OGC IndoorGML and implementation approaches, " ISPRS Int. J. Geo Inf., vol. 6, no. 4, p. 116, 2017.
[35] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, "Walkiemarkie: Indoor pathway mapping made easy, " in Proc. 10th USENIX Symp. Netw. Syst. Design Implement. (NSDI), Lombard, IL, USA, 2013, pp. 85-98.
[36] Y. Jiang et al., "Hallway based automatic indoor floorplan construction using room fingerprints, " in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., Zürich, Switzerland, Sep. 2013, pp. 315-324.
[37] S. Guo, H. Xiong, and X. Zheng, "A novel semantic matching method for indoor trajectory tracking, " ISPRS Int. J. Geo Inf., vol. 6, no. 7, p. 197, 2017.
[38] F. Gu, K. Khoshelham, J. Shang, F. Yu, and Z.Wei, "Robust and accurate smartphone-based step counting for indoor localization, " IEEE Sensors J., vol. 17, no. 11, pp. 3453-3460, Jun. 2017.
[39] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, "Window size impact in human activity recognition, " Sensors, vol. 14, no. 4, pp. 6474-6499, Apr. 2014.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/764
CollectionSchool of Science and Engineering
Corresponding AuthorPun, Man-On
Affiliation
1.Chinese Univ Hong Kong Shenzhen , Shenzhen 518172, Guangdong, Peoples R China
2.Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
First Author AffilicationThe Chinese University of HongKong,Shenzhen
Corresponding Author AffilicationThe Chinese University of HongKong,Shenzhen
Recommended Citation
GB/T 7714
Guo, Sheng,Pun, Man-On. Indoor Semantic-Rich Link-Node Model Construction Using Crowdsourced Trajectories From Smartphones[J]. IEEE SENSORS JOURNAL,2019.
APA Guo, Sheng, & Pun, Man-On. (2019). Indoor Semantic-Rich Link-Node Model Construction Using Crowdsourced Trajectories From Smartphones. IEEE SENSORS JOURNAL.
MLA Guo, Sheng,et al."Indoor Semantic-Rich Link-Node Model Construction Using Crowdsourced Trajectories From Smartphones".IEEE SENSORS JOURNAL (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Guo, Sheng]'s Articles
[Pun, Man-On]'s Articles
Baidu academic
Similar articles in Baidu academic
[Guo, Sheng]'s Articles
[Pun, Man-On]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Guo, Sheng]'s Articles
[Pun, Man-On]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.