Details of Research Outputs

TitleContinuous wave operation of gaasbi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41 μm
Author (Name in English or Pinyin)
Liu, Xiu1; Wang, Lijuan2,3; Fang, Xuan1,4; Zhou, Taojie1; Xiang, Guohong1; Xiang, Boyuan1; Chen, Xueqing1; Hark, Suikong1; Liang, Hao2,3; Wang, Shumin2,5; Zhang, Zhaoyu1
Date Issued2019-05-01
Source PublicationPhotonics Research
Funding Project国家自然科学基金项目
Firstlevel Discipline物理学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pagesv 7,n 5,p508-512
[1] L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[2] C. F. Lin, Y. S. Su, and B. R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication,” IEEE Photon. Technol. Lett. 14, 3–5 (2002).
[3] S. Mokkapati and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).
[4] R. Wang, S. Sprengel, A. Vasiliev, G. Boehm, J. Van Campenhout, G. Lepage, P. Verheyen, R. Baets, M.-C. Amann, and G. Roelkens, “Widely tunable 23 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing,” Photon. Res. 6, 858–866 (2018).
[5] N. Zhang, X. Cai, and S. Yu, “Optical generation of tunable and narrow linewidth radio frequency signal based on mutual locking between integrated semiconductor lasers,” Photon. Res. 2, B11–B17 (2014).
[6] S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1–xBix,” Appl. Phys. Lett. 82, 2245–2247 (2003).
[7] K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, and I. P. Kazakov, “GaAs(1-x)Bix: a promising material for optoelectronics applications,” Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2017).
[8] D. L. Young, J. F. Geisz, and T. J. Coutts, “Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena,” Appl. Phys. Lett. 82, 1236– 1238 (2003).
[9] S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Growth of GaInNAs and 1.3 μm edge emitting lasers by molecular beam epitaxy,” J. Cryst. Growth 311, 1863–1867 (2009).
[10] P. Carrier and S.-H. Wei, “Calculated spin-orbit splitting of all dia-mondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends,” Phys. Rev. B 70, 035212 (2004).
[11] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1–xBix,” Phys. Rev. Lett. 97, 067205 (2006).
[12] L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application,” Crystals 7, 63 (2017).
[13] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectro-mechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[14] C.-Z. Ning, L. Dou, and P. Yang, “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions,” Nat. Rev. Mater. 2, 17070 (2017).
[15] M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[16] S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, and Y. Fainman, “Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures,” Prog. Quantum Electron. 59, 1–18 (2018).
[17] K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[18] N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1–19 (2018).
[19] Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, and K. Volz, “Bismuth-containing III–V semiconductors,” in Molecular Beam Epitaxy (Elsevier, 2013), pp. 139–158.
[20] F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[21] C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2013).
[22] X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, and S. Wang, “1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy,” ACS Photon. 4, 1322–1326 (2017).
[23] S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75, 1538–1540 (1999).
[24] V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with AsSb nanoclusters in GaAs,” J. Appl. Phys. 97, 024309 (2005).
[25] D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots,” Semicond. Sci. Technol. 30, 114006 (2015).
[26] Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90, 111119 (2007).
[27] T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, and Z. Zhang, “Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate,” Opt. Express 26, 16797–16804 (2018).
[28] T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, and Z. Zhang, “Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges,” AIP Adv. 8, 075306 (2018).
[29] K. Yamashita, M. Yoshimoto, and K. Oe, “Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication,” Phys. Status Solidi C 3, 693–696 (2006).
[30] Q. Gu and Y. Fainman, Semiconductor Nanolasers (Cambridge University, 2017).
[31] S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
[32] B. E. A. Saleh, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
[33] Y. Tominaga, K. Oe, and M. Yoshimoto, “Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping,” Appl. Phys. Express 3, 062201 (2010).
[34] T. Fuyuki, R. Yoshioka, K. Yoshida, and M. Yoshimoto, “Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength,” Appl. Phys. Lett. 103, 202105 (2013).
[35] P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, “Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser,” Appl. Phys. Lett. 102, 242115 (2013).
[36] R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, and A. Krotkus, “Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth,” Electron. Lett. 50, 1155–1157 (2014).
[37] T. Fuyuki, K. Yoshida, R. Yoshioka, and M. Yoshimoto, “Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength,” Appl. Phys. Express 7, 082101 (2014).
[38] H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, and L. J. Mawst, “Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing,” J. Appl. Phys. 123, 113102 (2018).
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionSchool of Science and Engineering
Co-First AuthorWang, Lijuan; Fang, Xuan
1.School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen; 518172, China
2.University of Chinese Academy of Sciences, Beijing; 100049, China
3.Key Laboratory of Terahertz Solid-State Technology, Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai; 200050, China
4.Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin; 150025, China
5.Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg; 41296, Sweden
First Author AffilicationSchool of Science and Engineering
Recommended Citation
GB/T 7714
Liu, Xiu,Wang, Lijuan,Fang, Xuanet al. Continuous wave operation of gaasbi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41 μm[J]. Photonics Research,2019.
APA Liu, Xiu., Wang, Lijuan., Fang, Xuan., Zhou, Taojie., Xiang, Guohong., .. & Zhang, Zhaoyu. (2019). Continuous wave operation of gaasbi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41 μm. Photonics Research.
MLA Liu, Xiu,et al."Continuous wave operation of gaasbi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41 μm".Photonics Research (2019).
Files in This Item:
File Name/Size DocType File Type Version Access License
Continuous wave oper(767KB)Journal article--Published draftRestricted AccessCC BY-NC-SA
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Liu, Xiu]'s Articles
[Wang, Lijuan]'s Articles
[Fang, Xuan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Xiu]'s Articles
[Wang, Lijuan]'s Articles
[Fang, Xuan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Xiu]'s Articles
[Wang, Lijuan]'s Articles
[Fang, Xuan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.