Details of Research Outputs

TitleA Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep Learning and Post-Processing
Author (Name in English or Pinyin)
Kong, Weicong1; Dong, Zhao Yang1; Wang, Bo1; Zhao, Junhua2; Huang, Jie3
Date Issued2019-05-22
Source PublicationIEEE Transactions on Smart Grid
ISSN1949-3053
DOI10.1109/TSG.2019.2918330
Indexed BySCIE
Firstlevel Discipline动力与电气工程
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 11 期: 1 页: 148-160
References
[1] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, "Short-term residential load forecasting based on resident behaviour learning, " IEEE Trans. Power Syst., vol. 33, no. 1, pp. 1087-1088, Jan. 2018.
[2] F. Luo, G. Ranzi, W. Kong, Z. Y. Dong, S. Wang, and J. Zhao, "Non-intrusive energy saving appliance recommender system for smart grid residential users, " IET Gener. Transm. Distrib., vol. 11, no. 7, pp. 1786-1793, Nov. 2017.
[3] D. He, W. Lin, N. Liu, R. G. Harley, and T. G. Habetler, "Incorporating non-intrusive load monitoring into building level demand response, " IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1870-1877, Dec. 2013.
[4] NSMP Business Requirements Work Group. (2011). Smart Metering Infrastructure Minimum Functionality Specification. [Online]. Available: https://link. aemo. com. au/sites/wcl/smartmetering/Pages/BRWG. aspx
[5] C. Laughman et al., "Power signature analysis, " IEEE Power Energy Mag., vol. 1, no. 2, pp. 56-63, Mar. /Apr. 2003.
[6] L. K. Norford and S. B. Leeb, "Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms, " Energy Build., vol. 24, no. 1, pp. 51-64, 1996.
[7] T. Hassan, F. Javed, and N. Arshad, "An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring, " IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 870-878, Mar. 2014.
[8] S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds, and G. D. Abowd, "At the flick of a switch: Detecting and classifying unique electrical events on the residential power line, " presented at the Proc. 9th Int. Conf. Ubiquitous Comput., Innsbruck, Austria, 2007.
[9] M. Zeifman and K. Roth, "Nonintrusive appliance load monitoring: Review and outlook, " IEEE Trans. Consum. Electron., vol. 57, no. 1, pp. 76-84, Feb. 2011.
[10] H. Kim, M. Marwah, M. F. Arlitt, G. Lyon, and J. Han, "Unsupervised disaggregation of low frequency power measurements, " in Proc. SIAM Int. Conf. Data Min., Mesa, AZ, USA, 2011, pp. 747-758.
[11] M. J. Johnson and A. S. Willsky, "Bayesian nonparametric hidden semi-Markov models, " J. Mach. Learn. Res., vol. 14, no. 1, pp. 673-701, 2013.
[12] Z. Guo, Z. J. Wang, and A. Kashani, "Home appliance load modeling from aggregated smart meter data, " IEEE Trans. Power Syst., vol. 30, no. 1, pp. 254-262, Jan. 2015.
[13] S. Makonin, F. Popowich, I. V. Bajíc, B. Gill, and L. Bartram, "Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring, " IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2575-2585, Nov. 2015.
[14] W. Kong, Z. Y. Dong, D. J. Hill, J. Ma, J. H. Zhao, and F. J. Luo, "A hierarchical hidden Markov model framework for home appliance modeling, " IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3079-3090, Jul. 2018.
[15] O. Parson, S. Ghosh, M. Weal, and A. Rogers, "Using hidden Markov models for iterative non-intrusive appliance monitoring, " presented at the Neural Inf. Process. Syst. Workshop Mach. Learn. Sustain., 2011. [Online]. Available: http://eprints. soton. ac. uk/272990
[16] O. Parson, S. Ghosh, M. J. Weal, and A. Rogers, "An unsupervised training method for non-intrusive appliance load monitoring, " Artif. Intell., vol. 217, pp. 1-19, Dec. 2014.
[17] J. Z. Kolter and T. Jaakkola, "Approximate inference in additive factorial HMMs with application to energy disaggregation, " in Proc. 15th Int. Conf. Artif. Intell. Stat., 2012, pp. 1472-1482.
[18] D. Egarter, V. P. Bhuvana, and W. Elmenreich, "PALDi: Online load disaggregation via particle filtering, " IEEE Trans. Instrum. Meas., vol. 64, no. 2, pp. 467-477, Feb. 2015.
[19] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, "Improving nonintrusive load monitoring efficiency via a hybrid programing method, " IEEE Trans. Ind. Informat., vol. 12, no. 6, pp. 2148-2157, Dec. 2016.
[20] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar, "Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey, " Sensors (Basel), vol. 12, no. 12, pp. 16838-16866, 2012.
[21] N. Henao, K. Agbossou, S. Kelouwani, Y. Dubé, and M. Fournier, "Approach in nonintrusive type I load monitoring using subtractive clustering, " IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 812-821, Mar. 2015.
[22] K. He, L. Stankovic, J. Liao, and V. Stankovic, "Non-intrusive load disaggregation using graph signal processing, " IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1739-1747, May 2018.
[23] K. He, D. Jakovetic, V. Stankovic, and L. Stankovic, "Post-processing for event-based non-intrusive load monitoring, " in Proc. 4th Int. Workshop Non Intrusive Load Monitor., 2018, pp. 1-4.
[24] C. Dinesh, B. W. Nettasinghe, R. I. Godaliyadda, M. P. B. Ekanayake, J. Ekanayake, and J. V. Wijayakulasooriya, "Residential appliance identification based on spectral information of low frequency smart meter measurements, " IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2781-2792, Nov. 2016.
[25] S. Welikala, C. Dinesh, M. P. B. Ekanayake, R. I. Godaliyadda, and J. Ekanayake, "Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting, " IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 448-461, Jan. 2017.
[26] S. Welikala, C. Dinesh, R. I. Godaliyadda, M. P. B. Ekanayake, and J. Ekanayake, "Robust non-intrusive load monitoring (NILM) with unknown loads, " in Proc. IEEE Int. Conf. Inf. Autom. Sustain. (ICIAfS), Galle, Sri Lanka, 2016, pp. 1-6.
[27] K. Basu, V. Debusschere, S. Bacha, U. Maulik, and S. Bondyopadhyay, "Non intrusive load monitoring: A temporal multi-label classification approach, " IEEE Trans. Ind. Informat., vol. 11, no. 1, pp. 262-270, Feb. 2015.
[28] S. M. Tabatabaei, S. Dick, and W. Xu, "Toward non-intrusive load monitoring via multi-label classification, " IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 26-40, Jan. 2017.
[29] L. Mauch and B. Yang, "A new approach for supervised power disaggregation by using a deep recurrent LSTM network, " in Proc. IEEE Glob. Conf. Signal Inf. Process. (GlobalSIP), Orlando, FL, USA, 2015, pp. 63-67.
[30] T.-T.-H. Le, J. Kim, and H. Kim, "Classification performance using gated recurrent unit recurrent neural network on energy disaggregation, " in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC), vol. 1, 2016, pp. 105-110.
[31] D. de Paiva Penha and A. R. G. Castro, "Convolutional neural network applied to the identification of residential equipment in non-intrusive load monitoring systems, " in Proc. 3rd Int. Conf. Artif. Intell. Appl., 2017, pp. 11-21.
[32] K. S. Barsim and B. Yang, "On the feasibility of generic deep disaggregation for single-load extraction, " presented at the NILM Workshop, Austin, TX, USA, 2018.
[33] J. Kelly and W. Knottenbelt, "Neural NILM: Deep neural networks applied to energy disaggregation, " in Proc. 2nd ACM Int. Conf. Embedded Syst. Energy Efficient Built Environ., 2015, pp. 55-64.
[34] C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton, "Sequenceto-point learning with neural networks for non-intrusive load monitoring, " in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI), 2018, pp. 2604-2611.
[35] O. Russakovsky et al., "ImageNet large scale visual recognition challenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.
[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
[37] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition, " in Proc. Int. Conf. Learn. Representations (ICLR), 2015.
[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models, " in Proc. ICML, vol. 30, 2013, p. 3.
[39] A. Mohamed, G. E. Dahl, and G. Hinton, "Acoustic modeling using deep belief networks, " IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 1, pp. 14-22, Jan. 2012.
[40] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. Cambridge, U. K.: MIT Press, 2016.
[41] W. Kong, Z. Y. Dong, J. Ma, D. J. Hill, J. Zhao, and F. Luo, "An extensible approach for non-intrusive load disaggregation with smart meter data, " IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3362-3372, Jul. 2018.
[42] N. Pinto, D. D. Cox, and J. J. DiCarlo, "Why is real-world visual object recognition hard?" PLoS Comput. Biol., vol. 4, no. 1, p. e27, 2008.
[43] A. Mikolajczyk and M. Grochowski, "Data augmentation for improving deep learning in image classification problem, " in Proc. Int. Interdiscipl. Ph. D. Workshop (IIPhDW), 2018, pp. 117-122.
[44] J. Kelly and W. Knottenbelt, "The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes, " Sci. Data, vol. 2, Mar. 2015, Art. no. 150007.
[45] J. Z. Kolter and M. J. Johnson, "REDD: A public data set for energy disaggregation research, " in Proc. Workshop Data Min. Appl. Sustain. (SIGKDD), San Diego, CA, USA, vol. 25, 2011, pp. 59-62.
[46] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajic, "AMPds: A public dataset for load disaggregation and eco-feedback research, " in Proc. Elect. Power Energy Conf. (EPEC), 2013, pp. 1-6.
[47] D. Murray, L. Stankovic, and V. Stankovic, "An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study, " Sci. Data, vol. 4, May 2017, Art. no. 160122.
[48] N. Batra et al., "NILMTK: An open source toolkit for non-intrusive load monitoring, " in Proc. ACM 5th Int. Conf. Future Energy Syst., 2014, pp. 265-276.
[49] S. Makonin and F. Popowich, "Nonintrusive load monitoring (NILM) performance evaluation, " Energy Efficiency, vol. 8, no. 4, pp. 809-814, 2015.
Citation statistics
Cited Times:96[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/812
CollectionSchool of Science and Engineering
Corresponding AuthorDong, Zhao Yang
Affiliation
1.Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
2.Chinese Univ Hong Kong Shenzhen , Sch Sci & Engn, Shenzhen 518172, Peoples R China
3.State Grid Elect Power Res Inst, State Key Labs Smart Grid Protect Operat & Contro, Nanjing 210003, Peoples R China
Recommended Citation
GB/T 7714
Kong, Weicong,Dong, Zhao Yang,Wang, Boet al. A Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep Learning and Post-Processing[J]. IEEE Transactions on Smart Grid,2019.
APA Kong, Weicong, Dong, Zhao Yang, Wang, Bo, Zhao, Junhua, & Huang, Jie. (2019). A Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep Learning and Post-Processing. IEEE Transactions on Smart Grid.
MLA Kong, Weicong,et al."A Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep Learning and Post-Processing".IEEE Transactions on Smart Grid (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Kong, Weicong]'s Articles
[Dong, Zhao Yang]'s Articles
[Wang, Bo]'s Articles
Baidu academic
Similar articles in Baidu academic
[Kong, Weicong]'s Articles
[Dong, Zhao Yang]'s Articles
[Wang, Bo]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Kong, Weicong]'s Articles
[Dong, Zhao Yang]'s Articles
[Wang, Bo]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.