Details of Research Outputs

TitleHeteroaryldihydropyrimidines Alter Capsid Assembly By Adjusting the Binding Affinity and Pattern of the Hepatitis B Virus Core Protein
Author (Name in English or Pinyin)
Liu, Huihui1,2; Okazaki, Susumu1; Shinoda, Wataru1
Date Issued2019-11-22
Source PublicationJournal of Chemical Information and Modeling
ISSN1549-9596
DOI10.1021/acs.jcim.9b01010
Indexed BySCIE
Firstlevel Discipline生物学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 59 期: 12 页: 5104-5110
References
[1] WHO. Hepatitis B: World Health Organization Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed Oct 30, 2019).
[2] Berke, J. M.; Tan, Y.; Verbinnen, T.; Dehertogh, P.; Vergauwen, K.; Vos, A.; Lenz, O.; Pauwels, F. Antiviral Profiling of the Capsid Assembly Modulator BAY41-4109 on Full-Length HBV Genotype A-H Clinical Isolates and Core Site-Directed Mutants in Vitro. Antiviral Res. 2017, 144, 205-215, 10.1016/j.antiviral.2017.06.016
[3] Feng, S.; Gao, L.; Han, X.; Hu, T.; Hu, Y.; Liu, H.; Thomas, A. W.; Yan, Z.; Yang, S.; Young, J. A. T.; Yun, H.; Zhu, W.; Shen, H. C. Discovery of Small Molecule Therapeutics for Treatment of Chronic HBV Infection. ACS Infect. Dis. 2018, 4 (3), 257-277, 10.1021/acsinfecdis.7b00144
[4] Zhou, S.; Standring, D. N. Hepatitis B Virus Capsid Particles Are Assembled from Core-Protein Dimer Precursors. Proc. Natl. Acad. Sci. U. S. A. 1992, 89 (21), 10046-10050, 10.1073/pnas.89.21.10046
[5] Zlotnick, A.; Johnson, J. M.; Wingfield, P. W.; Stahl, S. J.; Endres, D. A Theoretical Model Successfully Identifies Features of Hepatitis B Virus Capsid Assembly. Biochemistry 1999, 38 (44), 14644-14652, 10.1021/bi991611a
[6] Endres, D.; Zlotnick, A. Model-Based Analysis of Assembly Kinetics for Virus Capsids or Other Spherical Polymers. Biophys. J. 2002, 83 (2), 1217-1230, 10.1016/S0006-3495(02)75245-4
[7] Kim, J.; Wu, J. A Molecular Thermodynamic Model for the Stability of Hepatitis B Capsids. J. Chem. Phys. 2014, 140 (23), 235101, 10.1063/1.4882068
[8] Stray, S. J.; Zlotnick, A. BAY 41-4109 Has Multiple Effects on Hepatitis B Virus Capsid Assembly. J. Mol. Recognit. 2006, 19 (6), 542-548, 10.1002/jmr.801
[9] Stray, S. J.; Bourne, C. R.; Punna, S.; Lewis, W. G.; Finn, M. G.; Zlotnick, A. A Heteroaryldihydropyrimidine Activates and Can Misdirect Hepatitis B Virus Capsid Assembly. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (23), 8138-8143, 10.1073/pnas.0409732102
[10] Deres, K.; Schröder, C. H.; Paessens, A.; Goldmann, S.; Hacker, H. J.; Weber, O.; Krämer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R. N.; Reimann, A.; Jaeger, R.; Gross, R.; Beckermann, B.; Schlemmer, K. H.; Haebich, D.; Rübsamen-Waigmann, H. Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids. Science 2003, 299 (5608), 893-896, 10.1126/science.1077215
[11] Klumpp, K.; Lam, A. M.; Lukacs, C.; Vogel, R.; Ren, S.; Espiritu, C.; Baydo, R.; Atkins, K.; Abendroth, J.; Liao, G.; Efimov, A.; Hartman, G.; Flores, O. A. High-Resolution Crystal Structure of a Hepatitis B Virus Replication Inhibitor Bound to the Viral Core Protein. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (49), 15196-15201, 10.1073/pnas.1513803112
[12] Ren, Q.; Liu, X.; Luo, Z.; Li, J.; Wang, C.; Goldmann, S.; Zhang, J.; Zhang, Y. Discovery of Hepatitis B Virus Capsid Assembly Inhibitors Leading to a Heteroaryldihydropyrimidine Based Clinical Candidate (GLS4). Bioorg. Med. Chem. 2017, 25 (3), 1042-1056, 10.1016/j.bmc.2016.12.017
[13] Tan, Z.; Pionek, K.; Unchwaniwala, N.; Maguire, M. L.; Loeb, D. D.; Zlotnick, A. The Interface between Hepatitis B Virus Capsid Proteins Affects Self-Assembly, Pregenomic RNA Packaging, and Reverse Transcription. J. Virol. 2015, 89 (6), 3275-3284, 10.1128/JVI.03545-14
[14] Ruan, L.; Hadden, J. A.; Zlotnick, A. Assembly Properties of Hepatitis B Virus Core Protein Mutants Correlate with Their Resistance to Assembly-Directed Antivirals. J. Virol. 2018, 92 (20), e01082-18 10.1128/JVI.01082-18
[15] Qiu, Z.; Lin, X.; Zhang, W.; Zhou, M.; Guo, L.; Kocer, B.; Wu, G.; Zhang, Z.; Liu, H.; Shi, H.; Kou, B.; Hu, T.; Hu, Y.; Huang, M.; Yan, S. F.; Xu, Z.; Zhou, Z.; Qin, N.; Wang, Y. F.; Ren, S.; Qiu, H.; Zhang, Y.; Zhang, Y.; Wu, X.; Sun, K.; Zhong, S.; Xie, J.; Ottaviani, G.; Zhou, Y.; Zhu, L.; Tian, X.; Shi, L.; Shen, F.; Mao, Y.; Zhou, X.; Gao, L.; Young, J. A. T.; Wu, J. Z.; Yang, G.; Mayweg, A. V.; Shen, H. C.; Tang, G.; Zhu, W. Discovery and Pre-Clinical Characterization of Third-Generation 4-H Heteroaryldihydropyrimidine (HAP) Analogues as Hepatitis B Virus (HBV) Capsid Inhibitors. J. Med. Chem. 2017, 60 (8), 3352-3371, 10.1021/acs.jmedchem.7b00083
[16] Guo, L.; Hu, T.; Kou, B.; Lin, X.; Shen, H.; Shi, H.; Yan, S.; Zhang, W.; Zhang, Z.; Zhou, M.; Zhu, W. Novel 6-Fused Heteroaryldihydropyrimidines for the Treatment and Prophylaxis of Hepatitis B Virus Infection. U.S. Patent, 2016.
[17] Bourne, C. R.; Finn, M. G.; Zlotnick, A. Global Structural Changes in Hepatitis B Virus Capsids Induced by the Assembly Effector HAP1. J. Virol. 2006, 80 (22), 11055-11061, 10.1128/JVI.00933-06
[18] Venkatakrishnan, B.; Katen, S. P.; Francis, S.; Chirapu, S.; Finn, M. G.; Zlotnick, A. Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. J. Virol. 2016, 90 (8), 3994-4004, 10.1128/JVI.03058-15
[19] Tu, J.; Li, J. J.; Shan, Z. J.; Zhai, H. L. Exploring the Binding Mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus Capsid Combined 3D-QSAR and Molecular Dynamics. Antiviral Res. 2017, 137, 151-164, 10.1016/j.antiviral.2016.11.026
[20] Watanabe, G.; Sato, S.; Iwadate, M.; Umeyama, H.; Hayakawa, M.; Murakami, Y.; Yoneda, S. Molecular Dynamics Simulations to Determine the Structure and Dynamics of Hepatitis B Virus Capsid Bound to a Novel Anti-Viral Drug. Chem. Pharm. Bull. 2016, 64 (9), 1393-1396, 10.1248/cpb.c16-00132
[21] Perilla, J. R.; Hadden, J. A.; Goh, B. C.; Mayne, C. G.; Schulten, K. All-Atom Molecular Dynamics of Virus Capsids as Drug Targets. J. Phys. Chem. Lett. 2016, 7 (10), 1836-1844, 10.1021/acs.jpclett.6b00517
[22] Rath, S. L.; Liu, H.; Okazaki, S.; Shinoda, W. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals. J. Chem. Inf. Model. 2018, 58 (2), 328-337, 10.1021/acs.jcim.7b00471
[23] Wynne, S. A.; Crowther, R. A.; Leslie, A. G. W. The Crystal Structure of the Human Hepatitis B Virus Capsid. Mol. Cell 1999, 3 (6), 771-780, 10.1016/S1097-2765(01)80009-5
[24] Packianathan, C.; Katen, S. P.; Dann, C. E.; Zlotnick, A. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly. J. Virol. 2010, 84 (3), 1607-1615, 10.1128/JVI.02033-09
[25] Trott, O.; Olson, A. Autodock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31 (2), 455-461, 10.1002/jcc.21334
[26] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
[27] Mayne, C. G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. C. Rapid Parameterization of Small Molecules Using the Force Field Toolkit. J. Comput. Chem. 2013, 34 (32), 2757-2770, 10.1002/jcc.23422
[28] Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14 (1), 33-38, 10.1016/0263-7855(96)00018-5
[29] MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102 (18), 3586-3616, 10.1021/jp973084f
[30] MacKerell, A. D.; Feig, M.; Brooks, C. L. Improved Treatment of the Protein Backbone in Empirical Force Fields. J. Am. Chem. Soc. 2004, 126 (3), 698-699, 10.1021/ja036959e
[31] Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain X1 and X2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8 (9), 3257-3273, 10.1021/ct300400x
[32] Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B. L.; Grubmüller, H.; MacKerell, A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14 (1), 71-73, 10.1038/nmeth.4067
[33] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926-935, 10.1063/1.445869
[34] Markidis, S.; Laure, E. Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software; EASC: Stockholm, Sweden, April 2-3, 2014, Revised Selected Papers, 2015; Vol. 8759.
[35] Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2015, 8759, 3-27, 10.1007/978-3-319-15976-8_1
[36] Páll, S.; Hess, B. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013, 184 (12), 2641-2650, 10.1016/j.cpc.2013.06.003
[37] Wennberg, C. L.; Murtola, T.; Páll, S.; Abraham, M. J.; Hess, B.; Lindahl, E. Direct-Space Corrections Enable Fast and Accurate Lorentz-Berthelot Combination Rule Lennard-Jones Lattice Summation. J. Chem. Theory Comput. 2015, 11 (12), 5737-5746, 10.1021/acs.jctc.5b00726
[38] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463-1472, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[39] Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100 (2), 020603, 10.1103/PhysRevLett.100.020603
[40] Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26 (16), 1781-1802, 10.1002/jcc.20289
[41] Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. J. Chem. Phys. 1995, 103 (11), 4613-4621, 10.1063/1.470648
[42] Jiang, W.; Thirman, J.; Jo, S.; Roux, B. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis. J. Phys. Chem. B 2018, 122 (41), 9435-9442, 10.1021/acs.jpcb.8b03277
[43] Wang, L.; Friesner, R. A.; Berne, B. J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115 (30), 9431-9438, 10.1021/jp204407d
[44] Jo, S.; Jiang, W. A Generic Implementation of Replica Exchange with Solute Tempering (REST2) Algorithm in NAMD for Complex Biophysical Simulations. Comput. Phys. Commun. 2015, 197, 304-311, 10.1016/j.cpc.2015.08.030
[45] Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F. Avoiding Singularities and Numerical Instabilities in Free Energy Calculations Based on Molecular Simulations. Chem. Phys. Lett. 1994, 222 (6), 529-539, 10.1016/0009-2614(94)00397-1
[46] Zacharias, M.; Straatsma, T. P.; McCammon, J. A. Separation-Shifted Scaling, a New Scaling Method for Lennard-Jones Interactions in Thermodynamic Integration. J. Chem. Phys. 1994, 100 (12), 9025-9031, 10.1063/1.466707
[47] Lu, N.; Kofke, D. A.; Woolf, T. B. Improving the Efficiency and Reliability of Free Energy Perturbation Calculations Using Overlap Sampling Methods. J. Comput. Chem. 2004, 25 (1), 28-39, 10.1002/jcc.10369
[48] Ceres, P.; Zlotnick, A. Weak Protein-Protein Interactions Are Sufficient to Drive Assembly of Hepatitis B Virus Capsids. Biochemistry 2002, 41 (39), 11525-11531, 10.1021/bi0261645
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/821
CollectionArieh Warshel Institute for Computational Biology
Kobilka Institute of Innovative Drug Discovery
Corresponding AuthorShinoda, Wataru
Affiliation
1.Nagoya Univ, Dept Mat Chem, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
2.Chinese Univ Hong Kong , Warshel Inst Computat Biol, 2001 Longxiang Rd, Shenzhen 518172, Guangdong, Peoples R China
Recommended Citation
GB/T 7714
Liu, Huihui,Okazaki, Susumu,Shinoda, Wataru. Heteroaryldihydropyrimidines Alter Capsid Assembly By Adjusting the Binding Affinity and Pattern of the Hepatitis B Virus Core Protein[J]. Journal of Chemical Information and Modeling,2019.
APA Liu, Huihui, Okazaki, Susumu, & Shinoda, Wataru. (2019). Heteroaryldihydropyrimidines Alter Capsid Assembly By Adjusting the Binding Affinity and Pattern of the Hepatitis B Virus Core Protein. Journal of Chemical Information and Modeling.
MLA Liu, Huihui,et al."Heteroaryldihydropyrimidines Alter Capsid Assembly By Adjusting the Binding Affinity and Pattern of the Hepatitis B Virus Core Protein".Journal of Chemical Information and Modeling (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Liu, Huihui]'s Articles
[Okazaki, Susumu]'s Articles
[Shinoda, Wataru]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Huihui]'s Articles
[Okazaki, Susumu]'s Articles
[Shinoda, Wataru]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Huihui]'s Articles
[Okazaki, Susumu]'s Articles
[Shinoda, Wataru]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.