Details of Research Outputs

TitleFederated Echo State Learning for Minimizing Breaks in Presence in Wireless Virtual Reality Networks
Author (Name in English or Pinyin)
Chen, Mingzhe1,2,3; Semiari, Omid4; Saad, Walid5; Liu, Xuanlin1; Yin, Changchuan1
Date Issued2019-09-27
Source PublicationIEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
ISSN1536-1276
DOI10.1109/TWC.2019.2942929
Indexed BySCIE
Firstlevel Discipline信息科学与系统科学
Education discipline科技类
Published range国外学术期刊
Volume Issue Pages卷: 19 期: 1 页: 177-191
References
[1] M. Chen, O. Semiari, W. Saad, X. Liu, and C. Yin, "Federated echo state learning for minimizing breaks in presence in wireless virtual reality networks, " in Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1-6.
[2] W. Saad, M. Bennis, and M. Chen, "A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, " IEEE Netw., pp. 1-9, Feb. 2019.
[3] E. Bastug, M. Bennis, M. Medard, and M. Debbah, "Toward interconnected virtual reality: Opportunities, challenges, and enablers, " IEEE Commun. Mag., vol. 55, no. 6, pp. 110-117, Jun. 2017.
[4] X. Ge, L. Pan, Q. Li, G. Mao, and S. Tu, "Multipath cooperative communications networks for augmented and virtual reality transmission, " IEEE Trans. Multimedia, vol. 19, no. 10, pp. 2345-2358, Oct. 2017.
[5] Y. Sun, Z. Chen, M. Tao, and H. Liu, "Communication, computing and caching for mobile VR delivery: Modeling and trade-off, " Apr. 2018, arXiv: 1804.10335. [Online]. Available: https://arxiv.org/abs/1804.10335
[6] J. Park and M. Bennis, "URLLC-eMBB slicing to support VR multimodal perceptions over wireless cellular systems, " in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1-7.
[7] X. Yang et al., "Communication-constrained mobile edge computing systems for wireless virtual reality: Scheduling and tradeoff, " IEEE Access, vol. 6, pp. 16665-16677, 2018.
[8] A. T. Z. Kasgari, W. Saad, and M. Debbah, "Human-in-The-loop wireless communications: Machine learning and brain-aware resource management, " IEEE Trans. Commun., to be published.
[9] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, "Edge computing meets millimeter-wave enabled VR: Paving the way to cutting the cord, " in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Barcelona, Spain, Apr. 2018, pp. 1-6.
[10] W.-C. Lo, C.-L. Fan, S.-C. Yen, and C.-H. Hsu, "Performance measurements of 360? video streaming to head-mounted displays over live 4G cellular networks, " in Proc. Asia-Pacific Netw. Oper. Manage. Symp., Seoul, South Korea, Sep. 2017, pp. 205-210.
[11] M. Chen, W. Saad, and C. Yin, "Virtual reality over wireless networks: Quality-of-service model and learning-based resource management, " IEEE Trans. Commun., vol. 66, no. 11, pp. 5621-5635, Nov. 2018.
[12] O. Semiari, W. Saad, M. Bennis, and M. Debbah, "Integrated millimeter wave and sub-6 GHz wireless networks: A roadmap for joint mobile broadband and ultra-reliable low-latency communications, " IEEE Wireless Commun., vol. 26, no. 2, pp. 109-115, Apr. 2019.
[13] J. Yin, L. Li, H. Zhang, X. Li, A. Gao, and Z. Han, "A prediction-based coordination caching scheme for content centric networking, " in Proc. Wireless Opt. Commun. Conf., Hualien, Taiwan, Apr. 2018, pp. 1-5.
[14] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, "A cooperative caching scheme based on mobility prediction in vehicular content centric networks, " IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5435-5444, Jun. 2018.
[15] N. T. Nguyen, Y. Wang, H. Li, X. Liu, and Z. Han, "Extracting typical users' moving patterns using deep learning, " in Proc. IEEE Global Commun. Conf., Anaheim, CA, USA, Dec. 2012, pp. 5410-5414.
[16] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong, "Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience, " IEEE J. Sel. Areas Commun., vol. 35, no. 5, pp. 1046-1061, May 2017.
[17] O. Esrafilian, R. Gangula, and D. Gesbert, "Learning to communicate in UAV-aided wireless networks: Map-based approaches, " IEEE Internet Things J. , vol. 6, no. 2, pp. 1791-1802, Apr. 2019.
[18] K. Bonawitz et al., "Towards federated learning at scale: System design, " Feb. 2019, arXiv: 1902.01046. [Online]. Available: https://arxiv.org/abs/1902.01046
[19] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, "Federated optimization: Distributed machine learning for on-device intelligence, " Oct. 2016, arXiv: 1610.02527. [Online]. Available: https://arxiv.org/abs/1610.02527
[20] J. Konecný, H. B. McMahan, and D. Ramage, "Federated optimization: Distributed optimization beyond the datacenter, " Nov. 2015, arXiv: 1511.03575. [Online]. Available: https://arxiv.org/abs/1511.03575
[21] S. Samarakoon, M. Bennis, W. Saady, and M. Debbah, "Distributed federated learning for ultra-reliable low-latency vehicular communications, " Jul. 2018, arXiv: 1807.08127. [Online]. Available: https://arxiv.org/abs/1807.08127
[22] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, "Artificial neural networks-based machine learning for wireless networks: A tutorial, " IEEE Commun. Surveys Tuts., to be published.
[23] O. Semiari, W. Saad, and M. Bennis, "Joint millimeter wave and microwave resources allocation in cellular networks with dual-mode base stations, " IEEE Wireless Commun., vol. 16, no. 7, pp. 4802-4816, Jul. 2017.
[24] Q. Li, M. Yu, A. Pandharipande, X. Ge, J. Zhang, and J. Zhang, "Performance of virtual full-duplex relaying on cooperative multipath relay channels, " IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3628-3642, May 2016.
[25] Q. Li, M. Yu, A. Pandharipande, and X. Ge, "Outage analysis of cooperative two-path relay channels, " IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3157-3169, May 2016.
[26] HTC. HTC Vive. Accessed: Sep. 2018. [Online]. Available: https://www.vive.com/us/
[27] Oculus. Mobile VR Media Overview. Accessed: Sep. 2018. [Online]. Available: https://www.oculus.com/
[28] O. Semiari, W. Saad, M. Bennis, and Z. Dawy, "Inter-operator resource management for millimeter wave multi-hop backhaul networks, " IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5258-5272, Aug. 2017.
[29] K. Venugopal, M. C. Valenti, and R. W. Heath, Jr., "Device-todevice millimeter wave communications: Interference, coverage, rate, and finite topologies, " IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6175-6188, Sep. 2016.
[30] J. Jerald, The VR Book: Human-Centered Design for Virtual Reality. San Rafael, CA, USA: Morgan & Claypool, 2015.
[31] J. Chung, H.-J. Yoon, and H. J. Gardner, "Analysis of break in presence during game play using a linear mixed model, " ETRI J. , vol. 32, no. 5, pp. 687-694, Oct. 2010.
[32] M. M. Amiri and D. Gündüz, "Computation scheduling for distributed machine learning with straggling workers, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019, pp. 8177-8181.
[33] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, "Federated multitask learning, " in Proc. Adv. Neural Inf. Process. Syst., Long beach, CA, USA, Dec. 2017, pp. 4427-4437.
[34] S. Scardapane, D. Wang, and M. Panella, "A decentralized training algorithm for echo state networks in distributed big data applications, " Neural Netw., vol. 78, pp. 65-74, Jun. 2016.
[35] X. Liu, M. Chen, C. Yin, and W. Saad, "Analysis of memory capacity for deep echo state networks, " in Proc. 17th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Orlando, FL, USA, Dec. 2018, pp. 443-448.
[36] M. Chen, W. Saad, C. Yin, and M. Debbah, "Echo state networks for proactive caching in cloud-based radio access networks with mobile users, " IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3520-3535, Jun. 2017.
[37] M. Bennis and D. Niyato, "A Q-learning based approach to interference avoidance in self-organized femtocell networks, " in Proc. IEEE Global Commun. Conf. Workshops, Miami, FL, USA, Dec. 2010, pp. 706-710.
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/844
CollectionFuture Network of Intelligence Institute
School of Science and Engineering
Corresponding AuthorChen, Mingzhe
Affiliation
1.Beijing Univ Posts & Telecommun, Beijing Key Lab Network Syst Architecture & Conve, Beijing 100876, Peoples R China
2.Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
3.Chinese Univ Hong Kong Shenzhen , Shenzhen 518172, Peoples R China
4.Univ Colorado, Dept Elect & Comp Engn, Colorado Springs, CO 80918 USA
5.Virginia Tech, Bradley Dept Elect & Comp Engn, Wireless VT, Blacksburg, VA 24060 USA
First Author AffilicationThe Chinese University of HongKong,Shenzhen
Corresponding Author AffilicationThe Chinese University of HongKong,Shenzhen
Recommended Citation
GB/T 7714
Chen, Mingzhe,Semiari, Omid,Saad, Walidet al. Federated Echo State Learning for Minimizing Breaks in Presence in Wireless Virtual Reality Networks[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2019.
APA Chen, Mingzhe, Semiari, Omid, Saad, Walid, Liu, Xuanlin, & Yin, Changchuan. (2019). Federated Echo State Learning for Minimizing Breaks in Presence in Wireless Virtual Reality Networks. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.
MLA Chen, Mingzhe,et al."Federated Echo State Learning for Minimizing Breaks in Presence in Wireless Virtual Reality Networks".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (2019).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Chen, Mingzhe]'s Articles
[Semiari, Omid]'s Articles
[Saad, Walid]'s Articles
Baidu academic
Similar articles in Baidu academic
[Chen, Mingzhe]'s Articles
[Semiari, Omid]'s Articles
[Saad, Walid]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chen, Mingzhe]'s Articles
[Semiari, Omid]'s Articles
[Saad, Walid]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.