Details of Research Outputs

TitleTackling resolution mismatch of precipitation extremes from gridded GCMs and site-scale observations: Implication to assessment and future projection
Author (Name in English or Pinyin)
Li, Jianfeng1; Gan, Thian Yew1,2; Chen, Yongqin David3,4; Gu, Xihui1,5; Hu, Zengyun6,7; Zhou, Qiming1; Lai, Yangchen1,8
Date Issued2020-02-11
Source PublicationATMOSPHERIC RESEARCH
ISSN0169-8095
DOI10.1016/j.atmosres.2020.104908
Firstlevel Discipline环境科学技术及资源科学技术
Education discipline科技类
Published range国外学术期刊
Volume Issue Pagesv 239,
References
[1] Alemseged, T.H., Tom, R., Evaluation of regional climate model simulations of rainfall over the Upper Blue Nile basin. Atmos. Res. 161 (2015), 57–64.
[2] Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., Tagipour, A., Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111(D5), 2006.
[3] Avila, F.B., Dong, S., Menang, K.P., Rajczak, J., Renom, M., Donat, M.G., Alexander, L.V., Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: a case study for south-East Australia. Weather Clim. Extremes 9 (2015), 6–16.
[4] Ayar, P.V., Vrac, M., Bastin, S., Carreau, J., Deque, M., Gallardo, C., Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: present climate evaluations. Clim. Dyn. 46 (2015), 1301–1329.
[5] Bhatti, H., Rientjes, T., Haile, A., Habib, E., Verhoef, W., Evaluation of bias correction method for satellite-based rainfall data. Sensors, 16(6), 2016, 884.
[6] Blacutt, L.A., Herdies, D.L., de Gonçalves, L.G.G., Vila, D.A., Andrade, M., Precipitation comparison for the CFSR, MERRA, TRMM3B42 and combined Scheme datasets in Bolivia. Atmos. Res. 163 (2015), 117–131.
[7] Caesar, J., Alexander, L., Vose, R., Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J. Geophys. Res. Atmos., 111(D5), 2006.
[8] Cavanaugh, N.R., Gershunov, A., Probabilistic tail dependence of intense precipitation on spatiotemporal scale in observations, reanalyses, and GCMs. Clim. Dyn. 45:11−12 (2015), 2965–2975.
[9] Chen, C.T., Knutson, T., On the verification and comparison of extreme rainfall indices from climate models. J. Clim. 21:7 (2008), 1605–1621.
[10] Chen, Y.D., Li, J., Zhang, Q., Changes in site-scale temperature extremes over China during 2071–2100 in CMIP5 simulations. J. Geophys. Res. Atmos. 121:6 (2016), 2732–2749.
[11] Chen, J., Chen, H., Guo, S., Multi-site precipitation downscaling using a stochastic weather generator. Clim. Dyn. 50:5–6 (2018), 1975–1992.
[12] Clark, S.K., Ming, Y., Adames, A.F., Monsoon low pressure system like variability in an idealized moist model. J. Clim., 2019, 10.1175/JCLI-D-19-0289.1.
[13] Conti, F.L., Hsu, K.L., Noto, L.V., Sorooshian, S., Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos. Res. 138 (2014), 189–204.
[14] Dosio, A., Panitz, H.J., Schubert-Frisius, M., Lüthi, D., Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim. Dyn. 44:9–10 (2015), 2637–2661.
[15] Easterling, D.R., Evans, J.L., Groisman, P.Y., Karl, T.R., Kunkel, K.E., Ambenje, P., Observed variability and trends in extreme climate events: a brief review. Bull. Am. Meteorol. Soc. 81:3 (2000), 417–426.
[16] El Kenawy, A.M., McCabe, M.F., A multi-decadal assessment of the performance of gauge-and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int. J. Climatol. 36:2 (2016), 656–674.
[17] Fealy, R., Sweeney, J., Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. Int. J. Climatol. 27:15 (2007), 2083–2094.
[18] Frich, P., Alexander, L.V., Della-Marta, P.M., Gleason, B., Haylock, M., Tank, A.K., Peterson, T., Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19:3 (2002), 193–212.
[19] Gebremedhin, M.A., Abraha, A.Z., Fenta, A.A., Changes in future climate indices using Statistical Downscaling Model in the upper Baro basin of Ethiopia. Theor. Appl. Climatol. 133:1–2 (2018), 39–46.
[20] Hegerl, G.C., Zwiers, F.W., Stott, P.A., Kharin, V.V., Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Clim. 17:19 (2004), 3683–3700.
[21] Hill, C., DeLuca, C., Suarez, M., da Silva, A., The architecture of the earth system modeling framework. Comput. Sci. Eng., 6(1), 2004, 18.
[22] Hofstra, N., Haylock, M., New, M., Jones, P., Frei, C., Comparison of six methods for the interpolation of daily, European climate data. J. Geophys. Res., 113, 2008, D21110, 10.1029/2008JD010100.
[23] Hu, Z., Hu, Q., Zhang, C., Chen, X., Li, Q., Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in Central Asia. J. Geophys. Res. Atmos. 121:10 (2016), 5648–5663.
[24] Hu, Z., Zhou, Q., Chen, X., Li, J., Li, Q., Chen, D., Yin, G., Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. International Journal of Climatology 38:9 (2018), 3475–3493.
[25] Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L.M., Sitch, S., Fisher, R., Malhi, Y., Simulated resilience of tropical rainforests to CO 2-induced climate change. Nature Geoscience, 6(4), 2013, 268.
[26] IPCC, Climate Change 2013: The Physical Science Basis. 2014, Cambridge University Press.
[27] Isotta, F.A., Vogel, R., Frei, C., Evaluation of European regional reanalyses and downscalings for precipitation in the Alpine region. Meteorol. Z. 24 (2015), 15–37.
[28] Kharin, V.V., Zwiers, F.W., Zhang, X., Intercomparison of near-surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J. Clim. 18:24 (2005), 5201–5223.
[29] Kwok, R., Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J. Geophys. Res. Oceans, 116(C8), 2011.
[30] Kysel, J., Comparison of extremes in GCM-simulated, downscaled and observed central-European temperature series. Clim. Res. 20:3 (2002), 211–222.
[31] Li, Z., Liu, W.Z., Zhang, X.C., Zheng, F.L., Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Clim. Chang. 105:1–2 (2011), 223–242.
[32] Li, J., Zhang, Q., Chen, Y.D., Singh, V.P., GCMs-based spatiotemporal evolution of climate extremes during the 21st century in China. J. Geophys. Res. Atmos. 118:19 (2013), 11–017.
[33] Li, J., Zhang, Q., Chen, Y.D., Singh, V.P., Future joint probability behaviors of precipitation extremes across China: spatiotemporal patterns and implications for flood and drought hazards. Glob. Planet. Chang. 124 (2015), 107–122.
[34] Li, J., Chen, Y.D., Zhang, L., Zhang, Q., Chiew, F.H., Future changes in floods and water availability across China: Linkage with changing climate and uncertainties. J. Hydrometeorol. 17:4 (2016), 1295–1314.
[35] Li, J., Chen, Y.D., Gan, T.Y., Lau, N.C., Elevated increases in human-perceived temperature under climate warming. Nat. Clim. Chang., 8(1), 2018, 43.
[36] Massey, F.J. Jr., The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46:253 (1951), 68–78.
[37] Miller, L.H., Table of percentage points of Kolmogorov statistics. J. Am. Stat. Assoc. 51:273 (1956), 111–121.
[38] Mineo, C., Ridolfi, E., Napolitano, F., Russo, F., The areal reduction factor: a new analytical expression for the Lazio Region in Central Italy. J. Hydrol. 560 (2018), 471–479.
[39] Mullan, D., Chen, J., Zhang, X.J., Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques. Clim. Dyn. 46:3–4 (2016), 967–986.
[40] Nikulin, G., Kjellstrom, E., Hansson, U.L.F., Strandberg, G., Ullerstig, A., Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A: Dynamic Meteorol. Ocean. 63:1 (2011), 41–55.
[41] O'brien, K., Sygna, L., Haugen, J.E., Vulnerable or resilient? A multi-scale assessment of climate impacts and vulnerability in Norway. Clim. Chang. 64:1–2 (2004), 193–225.
[42] Prein, A.F., Rasmussen, R.M., Ikeda, K., Liu, C., Clark, M.P., Holland, G.J., The future intensification of hourly precipitation extremes. Nat. Clim. Chang., 7, 2016, 48.
[43] Prein, A.F., Rasmussen, R., Stephens, G., Challenges and advances in convection-permitting climate modeling. Bull. Amer. Meteor. Soc. 98 (2017), 1027–1030, 10.1175/BAMS-D-16-0263.1.
[44] Raghavan, S.V., Liu, J., Nguyen, N.S., Vu, M.T., Liong, S.Y., Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theor. Appl. Climatol., 2017, 1–14.
[45] Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang., 109(1–2), 2011, 33.
[46] Sillmann, J., Roeckner, E., Indices for extreme events in projections of anthropogenic climate change. Clim. Chang. 86:1–2 (2008), 83–104.
[47] Sillmann, J., Kharin, V.V., Zhang, X., Zwiers, F.W., Bronaugh, D., Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 118:4 (2013), 1716–1733.
[48] Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X., Bronaugh, D., Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J. Geophys. Res. Atmos. 118:6 (2013), 2473–2493.
[49] Stephens, M.A., Use of the Kolmogorov–Smirnov, Cramer–Von Mises and related statistics without extensive tables. J. R. Stat. Soc. Ser. B Methodol. 32:1 (1970), 115–122.
[50] Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., Wu, J., Statistical downscaling and dynamical downscaling of regional climate in China: present climate evaluations and future climate projections. J. Geophys. Res. Atmos. 121:5 (2016), 2110–2129.
[51] Tank, K., Zwiers, F.W., Zhang, X., Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorological Organization.(Switzerland), 2009.
[52] Taylor, K.E., Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106:D7 (2001), 7183–7192.
[53] Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93:4 (2012), 485–498.
[54] Trenberth, K.E., Fasullo, J.T., Shepherd, T.G., Attribution of climate extreme events. Nat. Clim. Chang., 5(8), 2015, 725.
[55] van der Wiel, K., Kapnick, S.B., Vecchi, G.A., Cooke, W.F., Delworth, T.L., Jia, L., Murakami, H., Underwood, S., Zeng, F., The Resolution Dependence of Contiguous U.S. Precipitation Extremes in Response to CO2 Forcing. J. Clim. 29 (2016), 7991–8012, 10.1175/JCLI-D-16-0307.1.
[56] Van Vuuren, D.P., Stehfest, E., den Elzen, M.G., Kram, T., van Vliet, J., Deetman, S., et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2 C. Clim. Chang., 109(1–2), 2011, 95.
[57] Ward, E., Buytaert, W., Peaver, L., Wheater, H., Evaluation of precipitation products over complex mountainous terrain: a water resources perspective. Adv. Water Resour. 34:10 (2011), 1222–1231.
[58] Watson, D., Contouring: A Guide to the Analysis and Display of Spatial Data. 1992, Elsevier. Pergamon Press, Oxford, UK.
[59] Watson, D., An implementation of natural neighbor interpolation. D. Watson (pub), Claremont, Australia. 1994.
[60] Wehner, M.F., Predicted twenty-first-century changes in seasonal extreme precipitation events in the parallel climate model. J. Clim. 17:21 (2004), 4281–4290.
[61] Wilby, R.L., Wigley, T.M.L., Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr. 21:4 (1997), 530–548.
[62] Wilby, R.L., Hay, L.E., Leavesley, G.H., A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 225:1–2 (1999), 67–91.
[63] Xu, C.-Y., From GCM to river flow: a review of downscaling methods and hydrologic modeling approaches. Prog. Phys. Geogr. 23 (1999), 229–249.
[64] Yuan, S., Quiring, S.M., Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrol. Earth Syst. Sci., 21(4), 2017, 2203.
[65] Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Zwiers, F.W., Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change 2:6 (2011), 851–870.
[66] Zhang, Q., Singh, V.P., Li, J., Chen, X., Analysis of the periods of maximum consecutive wet days in China. J. Geophys. Res. Atmos., 116(D23), 2011.
Citation statistics
Cited Times:12[WOS]   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttps://irepository.cuhk.edu.cn/handle/3EPUXD0A/996
CollectionSchool of Humanities and Social Science
Corresponding AuthorLi, Jianfeng
Affiliation
1.Department of Geography, Hong Kong Baptist University, Hong Kong, Hong Kong
2.Department of Civil and Environmental Engineering, University of Alberta, Edmonton; Alberta; T6G 2W2, Canada
3.School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, China
4.Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, Hong Kong
5.School of Environmental Studies, China University of Geosciences, Wuhan, China
6.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
7.State Key Laboratory of desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi; 830011, China
8.Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and GeoInformation & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, S henzhen University, Shenzhen; 518060, China
Recommended Citation
GB/T 7714
Li, Jianfeng,Gan, Thian Yew,Chen, Yongqin Davidet al. Tackling resolution mismatch of precipitation extremes from gridded GCMs and site-scale observations: Implication to assessment and future projection[J]. ATMOSPHERIC RESEARCH,2020.
APA Li, Jianfeng., Gan, Thian Yew., Chen, Yongqin David., Gu, Xihui., Hu, Zengyun., .. & Lai, Yangchen. (2020). Tackling resolution mismatch of precipitation extremes from gridded GCMs and site-scale observations: Implication to assessment and future projection. ATMOSPHERIC RESEARCH.
MLA Li, Jianfeng,et al."Tackling resolution mismatch of precipitation extremes from gridded GCMs and site-scale observations: Implication to assessment and future projection".ATMOSPHERIC RESEARCH (2020).
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[Li, Jianfeng]'s Articles
[Gan, Thian Yew]'s Articles
[Chen, Yongqin David]'s Articles
Baidu academic
Similar articles in Baidu academic
[Li, Jianfeng]'s Articles
[Gan, Thian Yew]'s Articles
[Chen, Yongqin David]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Li, Jianfeng]'s Articles
[Gan, Thian Yew]'s Articles
[Chen, Yongqin David]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.